1
|
Cáceres E, Salazar P, Shidoh S, Ortiz MJ, Bragin DE, Kibria F, Divani AA. Noninvasive Vagus Nerve Stimulation Protects Neurons in the Perihematomal Region and Improves the Outcomes in a Rat Model of Intracerebral Hemorrhage. Neurocrit Care 2025:10.1007/s12028-024-02195-9. [PMID: 39815107 DOI: 10.1007/s12028-024-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Intracranial hemorrhage (ICH) is a devastating stroke subtype with a high rate of mortality and disability. Therapeutic options available are primarily limited to supportive care and blood pressure control, whereas the surgical approach remains controversial. In this study, we explored the effects of noninvasive vagus nerve stimulation (nVNS) on hematoma volume and outcome in a rat model of collagenase-induced ICH. METHODS Adult male Wistar rats were randomized into two study groups: (1) ICH-treated (rats treated with five 2-min nVNS) and (2) ICH-control (ICH with sham nVNS). Each group received either a 0.1-U or a 0.2-U collagenase dose. After assessing neurological function, rats were euthanized at 24 h for spectrophotometric hemoglobin assay, hematoma volume measurements, and histological studies. RESULTS The ICH-treated group that received the 0.1-U collagenase dose demonstrated significantly smaller hematoma volume and improved motor function compared with the ICH-control with the same dose. Furthermore, the pooled data for the ICH-treated groups (both 0.1 U and 0.2 U of collagenase) revealed a reduction in neuronal loss in the perihematomal region in the histopathological studies. This effect was not significant for the group that received a 0.2-Ucollagenase dose. CONCLUSIONS nVNS therapy in acute settings may provide a neuroprotective effect and limit hematoma expansion in smaller volumes, improving neurological function post-ICH.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- School of Engineering, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Satoka Shidoh
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Michael J Ortiz
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Denis E Bragin
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Fazle Kibria
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine 2022; 76:103880. [PMID: 35158309 PMCID: PMC8850756 DOI: 10.1016/j.ebiom.2022.103880] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Intracerebral haemorrhage (ICH) is the second most common type of stroke and a major cause of mortality and disability worldwide. Despite advances in surgical interventions and acute ICH management, there is currently no effective therapy to improve functional outcomes in patients. Recently, there has been tremendous progress uncovering new pathophysiological mechanisms underlying ICH that may pave the way for the development of therapeutic interventions. Here, we highlight emerging targets, but also existing gaps in preclinical animal modelling that prevent their exploitation. We particularly focus on (1) ICH aetiology, (2) the haematoma, (3) inflammation, and (4) post-ICH pathology. It is important to recognize that beyond neurons and the brain, other cell types and organs are crucially involved in ICH pathophysiology and successful interventions likely will need to address the entire organism. This review will spur the development of successful therapeutic interventions for ICH and advanced animal models that better reflect its aetiology and pathophysiology.
Collapse
|
3
|
Neuroprotective Pentapeptide, CN-105, Improves Outcomes in Translational Models of Intracerebral Hemorrhage. Neurocrit Care 2021; 35:441-450. [PMID: 33474632 DOI: 10.1007/s12028-020-01184-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/27/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating form of cerebrovascular disease for which there are no approved pharmacological interventions that improve outcomes. Apolipoprotein E (apoE) has emerged as a promising therapeutic target given its isoform-specific neuroprotective properties and ability to modify neuroinflammatory responses. We developed a 5-amino acid peptide, CN-105, that mimics the polar face of the apoE helical domain involved in receptor interactions, readily crosses the blood-brain barrier, and improves outcomes in well-established preclinical ICH models. In the current study, we investigated the therapeutic potential of CN-105 in translational ICH models that account for hypertensive comorbidity, sex, species, and age. METHODS In three separate experiments, we delivered three intravenous doses of CN-105 (up to 0.20 mg/kg) or vehicle to hypertensive male BPH/2 J mice, spontaneously hypertensive female rats, or 11-month-old male mice within 24-h of ICH. Neuropathological and neurobehavioral outcomes were determined over 3, 7, and 9 days, respectively. RESULTS In spontaneously hypertensive male mice, there was a significant dose-dependent effect of CN-105 on vestibulomotor function at 0.05 and 0.20 mg/kg doses (p < 0.05; 95% CI: 0.91-153.70 and p < 0.001; 95% CI: 49.54-205.62), while 0.20 mg/kg also improved neuroseverity scores (p < 0.05; 95% CI: 0.27-11.00) and reduced ipsilateral brain edema (p < 0.05; 95% CI: - 0.037 to - 0.001). In spontaneously hypertensive female rats, CN-105 (0.05 mg/kg) had a significant effect on vestibulomotor function (p < 0.01; η2 = 0.093) and neuroseverity scores (p < 0.05; η2 = 0.083), and reduced contralateral edema expansion (p < 0.01; 95% CI: - 1.41 to - 0.39). In 11-month-old male mice, CN-105 had a significant effect on vestibulomotor function (p < 0.001; η2 = 0.111) but not neuroseverity scores (p > 0.05; η2 = 0.034). CONCLUSIONS Acute treatment with CN-105 improves outcomes in translational ICH models independent of sex, species, age, or hypertensive comorbidity.
Collapse
|
4
|
Divani AA, Farr TD, Di Napoli M, Salazar P, SantaCruz KS, Jafarli A, Jafari M, Fisher M. Transfemoral Approach to Induce Transient Middle Cerebral Artery Occlusion in Rats: The Use of Commercially Available Endovascular Wires. Neurocrit Care 2019; 32:575-585. [PMID: 31346935 DOI: 10.1007/s12028-019-00791-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Animal models of stroke play a crucial role in determining the pathophysiology of stroke progression and assessment of any new therapeutic approaches. Transient middle cerebral artery occlusion (tMCAo) in rodent models are the most common site-specific type of ischemia because of their relevance to the clinical setting. Compared with the intraluminal filament technique for inducing tMCAo, the transfemoral approach using endovascular wires is relatively a new technique METHODS: Here we present the use of commercially available wires used for neuro-endovascular surgical procedures to induce tMCAo in rats via a transfemoral approach. We used male Wistar rats in four groups to assess the effect of occlusion time (1 vs. 2 hours) and the wire type (PT2 TM 0.014″ vs. TransendTM EX, 0.014″, Boston Scientific, MA, USA). Infarct volume, edema, neurological deficits, and pro-inflammatory/anti-inflammatory blood biomarkers were used as outcome measures. RESULTS We observed a significant effect of the wire type on the infarct volume (p value = 0.0096) where infarcts were slightly larger in the PT2 wiregroups. However, the occlusion time had no significant effect on infarct volume, even though the interaction between wire-type * occlusion-time was significant (p value = 0.024). Also, the amount of edema and blood pro-inflammatory/anti-inflammatory biomarkers were not statistically different among the wire-type and occlusion-time groups. CONCLUSIONS The choice of appropriate endovascular wire should probably be the focus of the study design instead of the occlusion time when planning an experiment. The transfemoral approach using endovascular wires for inducing tMCAo in rats provides a more consistent outcome with fewer complications compared with suture filament models.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology, University of Minnesota, MMC 295, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA. .,Department of Neurological Surgery, University of Minnesota, Minneapolis, MN, USA. .,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Tracy D Farr
- Faculty of Medicine and Health Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mario Di Napoli
- Department of Neurology, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | | | - Karen S SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Alibay Jafarli
- Department of Neurology, University of Minnesota, MMC 295, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Mostafa Jafari
- Department of Neurology, University of Minnesota, MMC 295, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Divani AA, Salazar P, Monga M, Beilman GJ, SantaCruz KS. Inducing Different Brain Injury Levels Using Shock Wave Lithotripsy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2925-2933. [PMID: 29689641 DOI: 10.1002/jum.14656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To assess the feasibility of inducing different severities of shock wave (SW)-induced traumatic brain injury (TBI) using lithotripsy. METHODS Wistar rats (n = 36) were divided into 2 groups: group 1 (n = 20) received 5 SW pulses, and group 2 (n = 16) received 15 SWs pulses. The SW pulses were delivered to the right side of the frontal cortex. Neurologic and behavioral assessments (Garcia test, beam walking, rotarod, and elevated plus maze) were performed at the baseline and at 3, 6, 24, 72, and 168 hours after injury. At day 7 after injury (168 hours), we performed cerebral angiography to assess the presence of cerebral vasospasm and vascular damage due to SW-induced TBI. At the conclusion of the study, the animals were euthanized to assess damage to brain tissue using an overall histologic severity score. RESULTS The Garcia score was significantly higher, and the anxiety index (based on the elevated plus maze) was significantly lower in group 1 compared to group 2 (P < .05). The anxiety index for group 1 returned to the baseline level in a fast nonlinear fashion, whereas the anxiety index for group 2 followed a distinct slow linear reduction. Cerebral angiograms revealed a more severe vasospasm for the animals in group 2 compared to group 1 (P = .027). We observed a statistically significant difference in the overall histologic severity scores between the groups. The median (interquartile range) overall histologic severity scores for groups 1 and 2 were 3.0 (2.75) and 6.5 (6.0), respectively (P = .023). CONCLUSIONS We have successfully established different SW-induced TBI severities in our SW-induced TBI model by delivering different numbers of SW pulses to brain tissue.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Greg J Beilman
- Department of Surgery, Division of Surgical Critical Care and Acute Care Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen S SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Li X, Feng D, Chen G. An Update On Medical Treatment for Intracerebral Hemorrhage. Transl Stroke Res 2018; 9:10.1007/s12975-018-0664-5. [PMID: 30206812 DOI: 10.1007/s12975-018-0664-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Dongxia Feng
- Department of Neurosurgery, Baylor Scott & White Medical Center, Texas A&M University College of Medicine, Temple, 76508, USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
7
|
Guan J, Hawryluk GWJ. Targeting Secondary Hematoma Expansion in Spontaneous Intracerebral Hemorrhage - State of the Art. Front Neurol 2016; 7:187. [PMID: 27826284 PMCID: PMC5078502 DOI: 10.3389/fneur.2016.00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (SICH), defined broadly as intracerebral hemorrhage not related to trauma, results in long-term disability or death in a large proportion of afflicted patients. Current management of this disease is predominantly supportive, including airway protection, optimization of hemodynamic parameters, and management of intracranial pressure. No active treatments that demonstrate beneficial effects on clinical outcome are currently available. Animal models of SICH have allowed for the elucidation of multiple pathways that may be attractive therapeutic targets. A minority of these, such as aggressive blood pressure management and recombinant activated factor VII administration, have led to large-scale clinical trials. There remains a critical need for further translational research in the realm of SICH.
Collapse
Affiliation(s)
- Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah , Salt Lake City, UT , USA
| | - Gregory W J Hawryluk
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah , Salt Lake City, UT , USA
| |
Collapse
|
8
|
Bachour SP, Hevesi M, Bachour O, Sweis BM, Mahmoudi J, Brekke JA, Divani AA. Comparisons between Garcia, Modo, and Longa rodent stroke scales: Optimizing resource allocation in rat models of focal middle cerebral artery occlusion. J Neurol Sci 2016; 364:136-40. [PMID: 27084232 DOI: 10.1016/j.jns.2016.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/24/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
The use of rodent stroke models allow for the understanding of stroke pathophysiology. There is currently no gold standard neurological assessment to measure deficits and recovery from stroke in rodent models. Agreement on a universal preclinical stroke scale allows for comparison of the outcomes among conducted studies. The present study aimed to compare three routinely used neurological assessments in rodent studies (i.e., Garcia, Modo, and Longa) to determine which is most effective for accurately and consistently quantifying neurological deficits in the context of focal middle cerebral artery occlusion (MCAo) in rats. Focal MCAo was induced in 22 male Wistar rats using a novel transfemoral approach. Rodents were assessed for neurological deficit pre-injury as well as 3 and 24h post-injury. Data was analyzed to determine Pearson correlation coefficients in addition to McNemar's χ(2) values between each pair of neurological assessments. All three stroke scales, Garcia, Modo, and Longa, showed statistically significant changes between the baseline and the 3-hour neurological assessments. A trend towards neurological recovery was observed in all three stroke scales between the 3 and 24-hour endpoints. The three scales were highly correlated with each other, with Garcia and Modo having the strongest correlation. Of the three pairwise analyses, the comparison between the Garcia and Longa tests demonstrated the highest McNemar's χ(2) value, indicating least marginal homogeneity between these two tests. The combination of high correlation between Garcia and Modo tests along with greatest marginal heterogeneity observed between the Garcia and Longa test lead us to recommend the use of Garcia and Longa neurological scales when researchers are hoping to capture the broadest range of neurological factors using only two stroke scales.
Collapse
Affiliation(s)
- Salam P Bachour
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mario Hevesi
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Medical School, Twin Cities Campus, University of Minnesota, Minneapolis, MN, United States
| | - Ornina Bachour
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Medical School, Twin Cities Campus, University of Minnesota, Minneapolis, MN, United States
| | - Brian M Sweis
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Medical School, Twin Cities Campus, University of Minnesota, Minneapolis, MN, United States; Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Julia A Brekke
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
9
|
Divani AA, Murphy AJ, Meints J, Sadeghi-Bazargani H, Nordberg J, Monga M, Low WC, Bhatia PM, Beilman GJ, SantaCruz KS. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury. J Neurotrauma 2015; 32:1109-16. [DOI: 10.1089/neu.2014.3686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Amanda J. Murphy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Joyce Meints
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Homayoun Sadeghi-Bazargani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Jessica Nordberg
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Prerana M. Bhatia
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Greg J. Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Karen S. SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
10
|
Divani AA, Chow R, Sadeghi-Bazargani H, Murphy AJ, Nordberg JA, Tokarev JV, Hevesi M, Wang X, Zhu XH, Acompanado T, Edwards PA, Zhang Y, Chen W. Focal middle cerebral artery ischemia in rats via a transfemoral approach using a custom designed microwire. J Neurointerv Surg 2015; 8:608-14. [PMID: 25935923 DOI: 10.1136/neurintsurg-2014-011607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/15/2015] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The aim of this study was to develop a reliable and repeatable method of inducing focal middle cerebral artery occlusion (MCAo) in rats without ligation of the external carotid artery (ECA), while reducing the risk of subarachnoid hemorrhage. METHODS We prototyped microwires with different diameters (0.0120 inch, 0.0115 inch, 0.0110 inch), materials, and construction methods (coil-on-core, extruded polymer jacket-on-core). Under fluoroscopic guidance and using femoral artery access, the microwires were navigated into the internal carotid artery of male Wistar rats (n=50, weight 376±64 g) to induce MCAo for 1 or 2 h. We performed neurological assessments at baseline, and at 3, 24, 72, and 168 h after MCAo. MRI measurements were performed on a 9.4 T scanner at 1 and 7 days post-injury. RESULTS The 0.0115 inch microwire with polymer jacket-on-core provided the most successful outcome. At 1 and 7 days post-injury, we observed similar infarction volumes for 1 and 2 h MCAo in the MRI study. Infarcted lesion volumes in both MCAo groups were significantly reduced at 7 days compared with 1 day post-injury. The trend in longitudinal changes for the scores of different neurological assessments was confirmed to be significant after the injury, but both groups showed a similar trend of neurological deficits over the course of the study. CONCLUSIONS We have developed a reliable and repeatable MCAo method in rats, allowing for precise occlusion of the MCA under direct fluoroscopic visualization without alteration of the cerebral hemodynamics associated with ECA ligation. The custom designed microwire can also be sized for targeted focal ischemia in larger animals.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA Department of Neurological Surgery, University of Minnesota, Minneapolis, Minnesota, USA Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ricky Chow
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA Lake Region Medical, Chaska, Minnesota, USA
| | - Homayoun Sadeghi-Bazargani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Iran Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Amanda J Murphy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica A Nordberg
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julian V Tokarev
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mario Hevesi
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao Wang
- Department of Radiology, Center for Magnetic Imaging Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao-Hong Zhu
- Department of Radiology, Center for Magnetic Imaging Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Yi Zhang
- Department of Radiology, Center for Magnetic Imaging Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei Chen
- Department of Radiology, Center for Magnetic Imaging Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014; 115:45-63. [PMID: 24139872 PMCID: PMC3961535 DOI: 10.1016/j.pneurobio.2013.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific therapies and treatments remain elusive. To address this, many recent experimental and translational studies of ICH have been conducted, and these have led to several ongoing clinical trials. This review focuses on the progress of translational studies of ICH including those of the underlying causes and natural history of ICH, animal models of the condition, and effects of ICH on the immune and cardiac systems, among others. Current and potential clinical trials also are discussed for both ICH alone and with intraventricular extension.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States.
| | - Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|