1
|
Lee RD, Chen YJ, Nguyen HM, Singh L, Dietrich CJ, Pyles BR, Cui Y, Weinstein JR, Wulff H. Repurposing the K Ca3.1 Blocker Senicapoc for Ischemic Stroke. Transl Stroke Res 2024; 15:518-532. [PMID: 37088858 PMCID: PMC11106165 DOI: 10.1007/s12975-023-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
Senicapoc, a small molecule inhibitor of the calcium-activated potassium channel KCa3.1, was safe and well-tolerated in clinical trials for sickle cell anemia. We previously reported proof-of-concept data suggesting that both pharmacological inhibition and genetic deletion of KCa3.1 reduces infarction and improves neurologic recovery in rodents by attenuating neuroinflammation. Here we evaluated the potential of repurposing senicapoc for ischemic stroke. In cultured microglia, senicapoc inhibited KCa3.1 currents with an IC50 of 7 nM, reduced Ca2+ signaling induced by the purinergic agonist ATP, suppressed expression of pro-inflammatory cytokines and enzymes (iNOS and COX-2), and prevented induction of the inflammasome component NLRP3. When transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in male C57BL/6 J mice, twice daily administration of senicapoc at 10 and 40 mg/kg starting 12 h after reperfusion dose-dependently reduced infarct area determined by T2-weighted magnetic resonance imaging (MRI) and improved neurological deficit on day 8. Ultra-high-performance liquid chromatography/mass spectrometry analysis of total and free brain concentrations demonstrated sufficient KCa3.1 target engagement. Senicapoc treatment significantly reduced microglia/macrophage and T cell infiltration and activation and attenuated neuronal death. A different treatment paradigm with senicapoc started at 3 h and MRI on day 3 and day 8 revealed that senicapoc reduces secondary infarct growth and suppresses expression of inflammation markers, including T cell cytokines in the brain. Lastly, we demonstrated that senicapoc does not impair the proteolytic activity of tissue plasminogen activator (tPA) in vitro. We suggest that senicapoc could be repurposed as an adjunctive immunocytoprotective agent for combination with reperfusion therapy for ischemic stroke.
Collapse
Affiliation(s)
- Ruth D Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Hai M Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Connor J Dietrich
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Benjamin R Pyles
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Yanjun Cui
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Lee RD, Chen YJ, Singh L, Nguyen HM, Wulff H. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol 2023; 14:1190476. [PMID: 37180699 PMCID: PMC10166874 DOI: 10.3389/fphar.2023.1190476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Mechanical thrombectomy has improved treatment options and outcomes for acute ischemic stroke with large artery occlusion. However, as the time window of endovascular thrombectomy is extended there is an increasing need to develop immunocytoprotective therapies that can reduce inflammation in the penumbra and prevent reperfusion injury. We previously demonstrated, that by reducing neuroinflammation, KV1.3 inhibitors can improve outcomes not only in young male rodents but also in female and aged animals. To further explore the therapeutic potential of KV1.3 inhibitors for stroke therapy, we here directly compared a peptidic and a small molecule KV1.3 blocker and asked whether KV1.3 inhibition would still be beneficial when started at 72 hours after reperfusion. Methods: Transient middle cerebral artery occlusion (tMCAO, 90-min) was induced in male Wistar rats and neurological deficit assessed daily. On day-8 infarction was determined by T2-weighted MRI and inflammatory marker expression in the brain by quantitative PCR. Potential interactions with tissue plasminogen activator (tPA) were evaluated in-vitro with a chromogenic assay. Results: In a direct comparison with administration started at 2 hours after reperfusion, the small molecule PAP-1 significantly improved outcomes on day-8, while the peptide ShK-223 failed to reduce infarction and neurological deficits despite reducing inflammatory marker expression. PAP-1 still provided benefits when started 72 hours after reperfusion. PAP-1 does not reduce the proteolytic activity of tPA. Discussion: Our studies suggest that KV1.3 inhibition for immunocytoprotection after ischemic stroke has a wide therapeutic window for salvaging the inflammatory penumbra and requires brain-penetrant small molecules.
Collapse
Affiliation(s)
- Ruth D. Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hai M. Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Zuo X, Lu J, Manaenko A, Qi X, Tang J, Mei Q, Xia Y, Hu Q. MicroRNA-132 attenuates cerebral injury by protecting blood-brain-barrier in MCAO mice. Exp Neurol 2019; 316:12-19. [PMID: 30930097 DOI: 10.1016/j.expneurol.2019.03.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have been widely reported to induce posttranscriptional gene silencing and led to an explosion of new strategies for the treatment of human disease. It has been reported that the expression of MicroRNA-132 (miR-132) are altered both in the blood and brain after stroke. However, the effect of miR-132 on blood-brain barrier (BBB) disruption in ischemia stroke has not been studied. Here we will investigate the effects of miR-132 on the permeability of BBB after ischemic stroke and explore the potential mechanism underlying observed protection. Eight week-old mice were injected intracerebroventricularly with miR-132, antagomir-132 or agomir negative control (agomir-NC) 2 h before middle cerebral artery occlusion (MCAO), followed by animal behavior tests and infraction volume measurement at 24 h after MCAO. BBB permeability and integrity were measured by Evan's blue extravasation and brain water content. The expression of tight junction proteins was detected by immnostaining and Western blots. The level of MiR-132 and its targeted gene Mmp9 were assayed. Treatment with exogenous MiR-132 (agomir-132) decreased the infraction volume, reduced brain edema, and improved neurological functions compared to control mice. Agomir-132 increased the level of MiR-132 in brain tissue, suppressed the expression of MMP-9 mRNA and decreased the degradation of tight junction proteins VE-cadherin and β-Catenin in ischemic stroke mice. Inhibition of MMP-9 has a similar protective effect to agomir-132 on infraction volume, brain edema, and tight-junction protein expression after MCAO. Our results indicated that miR-132/MMP-9 axis might be a novel therapeutic target for BBB protection in ischemic stroke.
Collapse
Affiliation(s)
- Xiaokun Zuo
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China; Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anatol Manaenko
- Departments of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xin Qi
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Tang
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China.
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhang W, Krafft PR, Wang T, Zhang JH, Li L, Tang J. Pathophysiology of Ganglioside GM1 in Ischemic Stroke: Ganglioside GM1: A Critical Review. Cell Transplant 2019; 28:657-661. [PMID: 30666888 PMCID: PMC6686431 DOI: 10.1177/0963689718822782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ganglioside GM1 is a member of the ganglioside family which has been used in many countries and is thought of as a promising alternative treatment for preventing several neurological diseases, including cerebral ischemic injury. The therapeutic effects of GM1 have been proved both in neonates and in adults following ischemic brain damage; however, its clinical efficacy in patients with ischemic stroke is still uncertain. This review examines the recent knowledge of the neuroprotective properties of GM1 in ischemic stroke, collected in the past two decades. We conclude that GM1 may have potential for stroke treatment, although we need to be cautious in respect of its complications.
Collapse
Affiliation(s)
- Wenchao Zhang
- 1 Department of Anesthesiology, Beijing Jishuitan Hospital, People's Republic of China
| | - Paul R Krafft
- 2 Department of Neurological Surgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Tianlong Wang
- 3 Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - John H Zhang
- 4 Department of Physiology & Pharmacology, Loma Linda University School of Medicine, USA.,5 Department of Anesthesiology, Loma Linda University School of Medicine, USA
| | - Li Li
- 6 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, People's Republic of China.,Both the authors contributed equally to this work
| | - Jiping Tang
- 4 Department of Physiology & Pharmacology, Loma Linda University School of Medicine, USA.,Both the authors contributed equally to this work
| |
Collapse
|