1
|
Edvinsson L, Krause DN. Switching Off Vascular MAPK Signaling: A Novel Strategy to Prevent Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:952-961. [PMID: 38334872 PMCID: PMC12045832 DOI: 10.1007/s12975-024-01234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Patients who initially survive the rupture and repair of a brain aneurysm often take a devastating turn for the worse some days later and die or suffer permanent neurologic deficits. This catastrophic sequela is attributed to a delayed phase of global cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH), but we lack effective treatment. Here we present our view, based on 20 years of research, that the initial drop in blood flow at the time of rupture triggers genomic responses throughout the brain vasculature that manifest days later as increased vasoconstriction and decreased cerebral blood flow. We propose a novel treatment strategy to prevent DCI by early inhibition of the vascular mitogen-activated protein kinase (MAPK) pathway that triggers expression of vasoconstrictor and inflammatory mediators. We summarize evidence from experimental SAH models showing early treatment with MAPK inhibitors "switches off" these detrimental responses, maintains flow, and improves neurological outcome. This promising therapy is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
- Department of Experimental Research, Glostrup Research Institute, CopenhagenUniversity, Copenhagen, Denmark.
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Department of Pharmaceutical Sciences, SchoolofPharmacy&PharmaceuticalSciences, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Yuan K, Wu Q, Yao Y, Shao J, Zhu S, Yang J, Sun Q, Zhao J, Xu J, Wu P, Li Y, Shi H. Deacetylase SIRT2 Inhibition Promotes Microglial M2 Polarization Through Axl/PI3K/AKT to Alleviate White Matter Injury After Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01282-5. [PMID: 39103659 DOI: 10.1007/s12975-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
White matter injury (WMI) subsequent to subarachnoid hemorrhage (SAH) frequently leads to an unfavorable patient prognosis. Previous studies have indicated that microglial M1 polarization following SAH results in the accumulation of amyloid precursor protein (APP) and degradation of myelin basic protein (MBP), thereby catalyzing the exacerbation of WMI. Consequently, transitioning microglial polarization towards the M2 phenotype (neuroprotective state) represents a potential therapeutic approach for reversing WMI. The SIRT2 gene is pivotal in neurological disorders such as neurodegeneration and ischemic stroke. However, its function and underlying mechanisms in SAH, particularly how it influences microglial function to ameliorate WMI, remain unclear. Our investigations revealed that in post-SAH, there was a temporal increase in SIRT2 expression, predominantly in the cerebral corpus callosum area, with notable colocalization with microglia. However, following the administration of the SIRT2 inhibitor AK-7, a shift in microglial polarization towards the M2 phenotype and an improvement in both short-term and long-term neuronal functions in rats were observed. Mechanistically, CO-IP experiments confirmed that SIRT2 can interact with the receptor tyrosine kinase Axl within the TAM receptor family and act as a deacetylase to regulate the deacetylation of Axl. Concurrently, the inhibition of SIRT2 by AK-7 can lead to increased expression of Axl and activation of the anti-inflammatory pathway PI3K/Akt signaling pathway, which regulates microglial M2 polarization and consequently reduces WMI. However, when Axl expression was inhibited by the injection of the shAxl virus into the lateral ventricles, the downstream signaling pathways were significantly suppressed. Rescue experiments also confirmed that the neuroprotective effects of AK-7 can be reversed by PI3K inhibitors. These data suggest that SIRT2 influences WMI by affecting microglial polarization through the Axl/PI3K/AKT pathway, and that AK-7 could serve as an effective therapeutic drug for improving neurological functions in SAH patients.
Collapse
Affiliation(s)
- Kaikun Yuan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Qiaowei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yanting Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Department of Neurosurgery, Beidahuang Group General Hospital, Harbin, 150001, People's Republic of China
| | - Jiang Shao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shiyi Zhu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jinshuo Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Qi Sun
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Junjie Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Pei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yuchen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
3
|
Peng J, He J, Hu X, Xia Y. GPR30 alleviated subarachnoid hemorrhage-induced blood-brain barrier dysfunction by activating the PI3K/Akt and Nrf2/HO-1 pathways. Am J Physiol Cell Physiol 2024; 327:C65-C73. [PMID: 38766766 DOI: 10.1152/ajpcell.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The blood-brain barrier (BBB) plays a critical role in the development and outcome of subarachnoid hemorrhage (SAH). This study focuses on the potential mechanism by which G-protein-coupled estrogen receptor 30 (GPR30) affects the BBB after SAH. A rat SAH model was established using an intravascular perforation approach. G1 (GPR30 agonist) was administered to investigate the mechanism of BBB damage after SAH. Brain water content, Western blotting, Evans blue leakage, and immunofluorescence staining were performed. Brain microvascular endothelial cells were induced by hemin to establish SAH model in vitro. By adding LY294002 [a phosphatidylinositol 3-kinase (PI3K) blocker] and zinc protoporphyrin IX (ZnPP IX) [a heme oxygenase 1 (HO-1) antagonist], the mechanism of improving BBB integrity through the activation of GPR30 was studied. In vivo, GPR30 activation improved BBB disruption, as evidenced by decreased cerebral edema, downregulated albumin expression, and reduced extravasation of Evans blue and IgG after G1 administration in SAH rats. Moreover, SAH downregulated the levels of tight junction (TJ) proteins, whereas treatment with G1 reversed the effect of SAH. The protective effect of G1 on BBB integrity in vitro was consistent with that in vivo, as evidenced by G1 reducing the impact of hemin on transendothelial electrical resistance (TEER) value, dextran diffusivity, and TJ protein levels in brain microvascular endothelial cells. In addition, G1 activated the PI3K/ protein kinase B (Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 pathways both in vivo and in vitro. Furthermore, the administration of LY294002 and ZnPP IX partially reversed the protective effect of G1 on BBB integrity in hemin-stimulated cells. We demonstrated that the activation of GPR30, at least partly through the PI3K/Akt and Nrf2/HO-1 pathways, alleviated BBB damage both in vivo and in vitro. This study introduced a novel therapeutic approach for protecting the BBB after SAH.NEW & NOTEWORTHY The PI3K/Akt and Nrf2/HO-1 pathways might be potential mechanisms by which GPR30 protected the integrity of the BBB in SAH models. Therefore, treatment of SAH with GPR30 activator might be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, People's Republic of China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, People's Republic of China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, People's Republic of China
| |
Collapse
|
4
|
Yamada H, Kase Y, Okano Y, Kim D, Goto M, Takahashi S, Okano H, Toda M. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death. Inflamm Regen 2022; 42:61. [PMID: 36514181 DOI: 10.1186/s41232-022-00236-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a fatal disease, with early brain injury (EBI) occurring within 72 h of SAH injury contributes to its poor prognosis. EBI is a complicated phenomenon involving multiple mechanisms. Although neuroinflammation has been shown to be important prognosis factor of EBI, whether neuroinflammation spreads throughout the cerebrum and the extent of its depth in the cerebral cortex remain unknown. Knowing how inflammation spreads throughout the cerebrum is also important to determine if anti-inflammatory agents are a future therapeutic strategy for EBI. METHODS In this study, we induced SAH in mice by injecting hematoma into prechiasmatic cistern and created models of mild to severe SAH. In sections of the mouse cerebrum, we investigated neuroinflammation and neuronal cell death in the cortex distal to the hematoma injection site, from anterior to posterior region 24 h after SAH injury. RESULTS Neuroinflammation caused by SAH spread to all layers of the cerebral cortex from the anterior to the posterior part of the cerebrum via the invasion of activated microglia, and neuronal cell death increased in correlation with neuroinflammation. This trend increased with the severity of the disease. CONCLUSIONS Neuroinflammation caused by SAH had spread throughout the cerebrum, causing neuronal cell death. Considering that the cerebral cortex is responsible for long-term memory and movement, suppressing neuroinflammation in all layers of the cerebral cortex may improve the prognosis of patients with SAH.
Collapse
Affiliation(s)
- Hiroki Yamada
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Doyoon Kim
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Maraku Goto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Devlin P, Ishrat T, Stanfill AG. A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
Affiliation(s)
- Patrick Devlin
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Ansley Grimes Stanfill
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA.
- Department of Acute and Tertiary Care, College of Nursing, University of Tennessee Health Science Center, 874 Union Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
6
|
Jelinek M, Duris K. Inflammatory Response in Sepsis and Hemorrhagic Stroke. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
8
|
Chen H, Zhou C, Zheng J, Zhang Z, Deng Y, Cheng C, Guo Z, Huo G, Yin C, Sun X. PTEN and AKT/GSK-3β/CRMP-2 signaling pathway are involved in neuronal apoptosis and axonal injury in early brain injury after SAH in rats. Genes Dis 2022; 9:252-267. [PMID: 35005122 PMCID: PMC8720672 DOI: 10.1016/j.gendis.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022] Open
Abstract
In early brain injury (EBI) after subarachnoid hemorrhage (SAH), white matter (WM) axonal injury plays a key role in the prognosis of the disease. The purpose of this study was to investigate the effects of phosphatase and tensin homolog deleted on chromosome ten (PTEN) on axonal injury and neuronal apoptosis post-SAH in rats and to find its underlying mechanism. Adeno-associated virus was injected into the lateral ventricle to suppress or promote PTEN. Neural function post-SAH in animals was determined by the modified Garcia score, beam balance, and Rotarod test, and the blood–brain barrier disruption was assessed by the brain water content. Axonal injury post-SAH was observed by TEM and determined by IF, and neuron apoptosis was measured by TUNEL staining. The mechanism was analyzed by Western blot to detect p-PTEN/PTEN, p-AKT/AKT, p-GSK-3β/GSK-3β, p-CRMP-2/CRMP-2, axonal injury marker β-APP and pro- and anti-apoptosis proteins, including Bax and Bcl-2, expression. We found 1. After knocking down PTEN, neuronal apoptosis and axonal injury were alleviated, and nerve function and blood–brain barrier were protected; accordingly, after overexpression of PTEN, neuronal apoptosis and axon damage were aggravated, and nerve function damage and blood–brain barrier damage were increased. 2. PTEN and AKT/GSK-3β/CRMP-2 pathway were jointly involved in regulating neuronal apoptosis and WM axon injury after SAH. According to our research, PTEN was a negative factor of EBI, and together with the AKT/GSK-3β/CRMP-2 signaling pathway aggravates neuronal apoptosis and WM axon damage after SAH. Inhibition of PTEN expression may become a new target for SAH treatment.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Zhou
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jianfeng Zheng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaosi Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yongbing Deng
- Department of Neurosurgery of the Chongqing Emergency Medical Center, Chongqing 400014, PR China
| | - Chongjie Cheng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zongduo Guo
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Gang Huo
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Xiaochuan Sun
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
9
|
Cai L, Zeng H, Tan X, Wu X, Qian C, Chen G. The Role of the Blood Neutrophil-to-Lymphocyte Ratio in Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2021; 12:671098. [PMID: 34149601 PMCID: PMC8209292 DOI: 10.3389/fneur.2021.671098] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is an important type of stroke with the highest rates of mortality and disability. Recent evidence indicates that neuroinflammation plays a critical role in both early brain injury and delayed neural deterioration after aSAH, contributing to unfavorable outcomes. The neutrophil-to-lymphocyte ratio (NLR) is a peripheral biomarker that conveys information about the inflammatory burden in terms of both innate and adaptive immunity. This review summarizes relevant studies that associate the NLR with aSAH to evaluate whether the NLR can predict outcomes and serve as an effective biomarker for clinical management. We found that increased NLR is valuable in predicting the clinical outcome of aSAH patients and is related to the risk of complications such as delayed cerebral ischemia (DCI) or rebleeding. Combined with other indicators, the NLR provides improved accuracy for predicting prognosis to stratify patients into different risk categories. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Lingxin Cai
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Wu
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Qian
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Abstract
Glioma is one of the most frequent primary brain tumors. Currently, the most common therapeutic strategy for patients with glioma is surgical resection combined with radiotherapy or/and adjuvant chemotherapy. However, due to the metastatic and invasive nature of glioma cells, the recurrence rate is high, resulting in poor prognosis. In recent years, gas therapy has become an emerging treatment. Studies have shown that the proliferation, metastasis and invasiveness of glioma cells exposed to anesthetic gases are obviously inhibited. Therefore, anesthetic gas may play a special therapeutic role in gliomas. In this review, we aim to collect existing research and summarize the rules of using anesthetic gases on glioma, providing potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi-Guang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Javahertalab M, Susanabadi A, Modir H, Kamali A, Amani A, Almasi-Hashiani A. Comparing intravenous dexmedetomidine and clonidine in hemodynamic changes and block following spinal anesthesia with ropivacaine in lower limb orthopedic surgery: a randomized clinical trial. Med Gas Res 2021; 10:1-7. [PMID: 32189663 PMCID: PMC7871933 DOI: 10.4103/2045-9912.279977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Dexmedetomidine (DEX) can prolong duration of anesthesia and shorten onset of sensory and motor block relative to clonidine. This study attempted to compare the efficacy of intravenous DEX and clonidine for hemodynamic changes and block after spinal anesthesia with ropivacaine in lower limb orthopedic surgery. In a double-blind randomized clinical trial, 120 patients undergoing spinal anesthesia in lower limb orthopedic surgery were recruited and divided into three groups using balanced block randomization: DEX group (n = 40; intravenous DEX 0.2 µg/kg), clonidine group (n = 40; intravenous clonidine 0.4 µg/kg), and placebo group (n = 40; intravenous normal saline 10 mL) in which pain scores were assessed using visual analogue scales (at recovery, and 2, 4, 6, and 12 hours after surgery) and time to achieve and onset of sensory and motor block. Statistically significant differences were found in mean arterial pressure among the groups at all times except baseline (P = 0.001), with a less mean arterial pressure and a prolonged duration of sensory and motor block (P = 0.001) in the DEX group where pain relieved in patients immediately after surgery and at above mentioned time points (P = 0.001). Simultaneous administration of intravenous DEX with ropivacaine for spinal anesthesia prolongs the duration of sensory and motor block and relieves postoperative pain, and however, can decrease blood pressure. Although intravenous DEX as an adjuvant can be helpful during spinal anesthesia with ropivacaine, it should be taken with caution owing to a lowering of mean arterial pressure in patients especially in the older adults. This study was approved by Ethical Committee of Arak University of Medical Sciences (No. IR.Arakmu.Rec.1395.450) in March, 2017, and the trial was registered and approved by the Iranian Registry of Clinical Trials (IRCT No. IRCT2017092020258N60) in 2017.
Collapse
Affiliation(s)
- Maryam Javahertalab
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Susanabadi
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Hesameddin Modir
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Kamali
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Amani
- Department of Orthopedic Surgery, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|
12
|
Anzolin AP, da Silveira-Kaross NL, Bertol CD. Ozonated oil in wound healing: what has already been proven? Med Gas Res 2021; 10:54-59. [PMID: 32189671 PMCID: PMC7871935 DOI: 10.4103/2045-9912.279985] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Acute or chronic inflammatory reactions aim to control lesions, resist to pathogens attack and repair damaged tissue. The therapeutic administration of ozone known as ozone therapy appears as a possible treatment for tissue repair, as it promotes the healing of wounds. It has bactericidal, antiviral and antifungal properties and has been used as a therapeutic resource to treat inflammation. The objective was to carry out an integrative review regarding the use of ozonated oil in acute and chronic inflammations. The keywords “ozone therapy,” “inflammation” and “ozone” were used in the Portuguese, Spanish and English languages. The paper selection was based on inclusion and exclusion criteria. In total, 28 articles were selected. It has been seen that ozonated oil is effective in healing cutaneous wounds. The beneficial effects are due to the healing of wounds, due to the reduction of microbial infection, debridement effect, modulation of the inflammatory phase, stimulation to angiogenesis as well as biological and enzymatic reactions that favor the oxygen metabolism, improving the wound cicatrization. In addition to promoting healing, ozonated oil reduces symptoms related to skin burns, prevents post-lesion hyperpigmentation, and reduces the pain of aphthous ulcers. Therefore, ozonated oil represents an effective and inexpensive therapeutic alternative that must be implanted in the public health system.
Collapse
Affiliation(s)
- Ana Paula Anzolin
- College of Pharmacy, Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo, Brasil
| | | | - Charise Dallazem Bertol
- College of Pharmacy, Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo, Brasil
| |
Collapse
|
13
|
Goudarzi TH, Kamali A, Yazdi B, Broujerdi GN. Addition of dexmedetomidine, tramadol and neostigmine to lidocaine 1.5% increasing the duration of postoperative analgesia in the lower abdominal pain surgery among children: A double-blinded randomized clinical study. Med Gas Res 2020; 9:110-114. [PMID: 31552872 PMCID: PMC6779012 DOI: 10.4103/2045-9912.266984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pain is a common complication after surgery. Insufficient control of postoperative pain has adverse effects on the physiological, metabolic and psychological state of the child. The use of local analgesics and anesthetics alone cannot produce complete anesthesia and intraoperative comfort. The addition of adjuvant drugs is commonly used to improve the quality of the block. Therefore, adding new supplements may increase the duration of analgesia. The aim of this study was to compare the addition of dexmedetomidine, tramadol and neostigmine to lidocaine 1.5% in increasing the duration of postoperative analgesia in the lower abdominal pain surgery in children aged 2–8 years. This double-blind randomized clinical trial was conducted on children candidate for lower abdominal surgery. The 96 patients were randomly divided into 3 groups including dexmedetomidine, neostigmine, and tramadol. For all children, 3 mg of midazolam was administered orally before entering the operating room. The patients underwent general anesthesia with 2 μg/kg fentanyl, 0.03 mg/kg midazolam, 0.5 mg/kg atracurium and 5–6 mg/kg thiopental. After determining the hiatus membrane, 2 mL syringes containing air and distilled water (each of which 1 mL) slowly entered the space. After eliminating caudal resistance, 1.5% lidocaine was injected at dose of 0.5 mL/kg. A total of 96 patients were enrolled in this study. The results revealed that pain scores in the dexmedetomidine group in recovery, 2, 6 and 12 hours after surgery were less than the other two groups. Furthermore, the tramadol group showed a lower score in comparison with the neostigmine group and the duration of analgesia in the dexmedetomidine group was more than the other two groups. In addition, the mean of analgesic at 24 hours after operation in the dexmedetomidine group was lower as compared to the other two groups, indicating the effect of dexmedetomidine as an adjuvant in increasing the duration of analgesia and reducing postoperative pain in patients along with lidocaine 1.5%. All three drugs (neostigmine, tramadol and dexmedetomidine drugs), along with other local anesthetic, increased the duration of analgesia and decreased postoperative pain in children. The effect of dexmedetomidine was greater than the other two drugs. The study was approved by the Ethics Committee of Arak University of Medical Sciences, Iran (approved No. IR.ARAKMU.REC.1396.112) on October 28, 2017, and registered at Iranian Registry of Clinical Trials (registration No. IRCT20141209020258N83) on August 29, 2018.
Collapse
Affiliation(s)
- Tara Hasani Goudarzi
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Kamali
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Bijan Yazdi
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|
14
|
Zhao C, Ma J, Wang Z, Li H, Shen H, Li X, Chen G. Mfsd2a Attenuates Blood-Brain Barrier Disruption After Sub-arachnoid Hemorrhage by Inhibiting Caveolae-Mediated Transcellular Transport in Rats. Transl Stroke Res 2020; 11:1012-1027. [PMID: 31907728 DOI: 10.1007/s12975-019-00775-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) disruption is one of the critical mechanisms of brain injury induced by subarachnoid hemorrhage (SAH). Past studies have often focused on the tight junctions of endothelial cells. However, low transcellular transport levels also play an important role in the normal functioning of the BBB. Major facilitator superfamily domain-containing 2a (Mfsd2a) has been demonstrated to be essential for the maintenance of the normal BBB. Our present study aimed to explore the roles and mechanisms of Mfsd2a in BBB disruption after SAH. In this study, a prechiasmatic cistern single-injection model was used to produce experimental SAH in Sprague-Dawley rats. Specific small-interfering RNA and plasmids were used to downregulate and upregulate the expression of Mfsd2a prior to assessments in our SAH model. Omega-3 fatty acid deficiency diet was used to reduce DHA in rat brain. The expression level of Mfsd2a decreased significantly after SAH and reached its lowest level at 72 h post-SAH, which then gradually recovered. At 72 h after SAH, BBB function was disrupted; upregulation of Mfsd2a reversed this damage, whereas downregulation of Mfsd2a exacerbated this damage. These effects were primarily mediated through transcellular transport, especially for changes in caveolae compared to those of tight junctions. After stopping the supply of omega-3 fatty acids, the effect of Mfsd2a on inhibition of caveolae and protection of the blood-brain barrier was eliminated. Taken together, Mfsd2a inhibits caveolae-based transcellular transport by transporting omega-3 fatty acids to protect the BBB after SAH.
Collapse
Affiliation(s)
- Chongshun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Junwei Ma
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
15
|
Wang J, Zuo Y, Zhuang K, Luo K, Yan X, Li J, Zhang JH, Liu F. Recombinant Human Milk Fat Globule-Epidermal Growth Factor 8 Attenuates Microthrombosis after Subarachnoid Hemorrhage in Rats. J Stroke Cerebrovasc Dis 2019; 29:104536. [PMID: 31883781 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/28/2019] [Accepted: 11/09/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microthrombosis after subarachnoid hemorrhage has an adverse effect on prognosis. Milk fat globule-epidermal growth factor 8 promotes phagocytosis of phagocytic cells and may reduce microthrombosis. This study investigated the effects of recombinant human milk fat globule-epidermal growth factor 8 on microthrombosis and neurological function after subarachnoid hemorrhage. METHODS Rats subarachnoid hemorrhage model was induced by intravascular puncture method. Western blot was performed to measure the expression of endogenous milk fat globule-epidermal growth factor 8 after subarachnoid hemorrhage. Microthrombosis was quantified by microthrombi count using immunohistochemistry and immunofluorescence. The neuroprotective effect of recombinant human milk fat globule-epidermal growth factor 8 administration was evaluated by modified Garcia score, beam balance, Rotarod test, and Morris water maze. RESULTS Endogenous milk fat globule-epidermal growth factor 8 protein level increased after subarachnoid hemorrhage. Microthrombosis was significantly increased in subarachnoid hemorrhage rats brain, while recombinant human milk fat globule-epidermal growth factor 8 dramatically reduced microthrombosis as well as improve short- and long- term neurobehavior after subarachnoid hemorrhage. CONCLUSIONS Recombinant human milk fat globule-epidermal growth factor 8 reduces microthrombosis and improves neurological function after subarachnoid hemorrhage, which may be an effective strategy for treating subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jikai Wang
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yuchun Zuo
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Kai Zhuang
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Kui Luo
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianming Li
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California.
| | - Fei Liu
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Zhang C, Jiang M, Wang WQ, Zhao SJ, Yin YX, Mi QJ, Yang MF, Song YQ, Sun BL, Zhang ZY. Selective mGluR1 Negative Allosteric Modulator Reduces Blood-Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2019; 11:799-811. [PMID: 31833035 DOI: 10.1007/s12975-019-00758-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) disruption leads to the vasogenic brain edema and contributes to the early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the mechanisms underlying the BBB damage following SAH are poorly understood. Here we reported that the neurotransmitter glutamate of cerebrospinal fluid (CSF) was dramatically increased in SAH patients with symptoms of cerebral edema. Using the rat SAH model, we found that SAH caused the increase of CSF glutamate level and BBB permeability in EBI, intracerebroventricular injection of exogenous glutamate deteriorated BBB damage and cerebral edema, while intraperitoneally injection of metabotropic glutamate receptor 1(mGluR1) negative allosteric modulator JNJ16259685 significantly attenuated SAH-induced BBB damage and cerebral edema. In an in vitro BBB model, we showed that glutamate increased monolayer permeability of human brain microvascular endothelial cells (HBMEC), whereas JNJ16259685 preserved glutamate-damaged BBB integrity in HBMEC. Mechanically, glutamate downregulated the level and phosphorylation of vasodilator-stimulated phosphoprotein (VASP), decreased the tight junction protein occludin, and increased AQP4 expression at 72 h after SAH. However, JNJ16259685 significantly increased VASP, p-VASP, and occludin, and reduced AQP level at 72 h after SAH. Altogether, our results suggest an important role of glutamate in disruption of BBB function and inhibition of mGluR1 with JNJ16259685 reduced BBB damage and cerebral edema after SAH.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China
| | - Ming Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Wei-Qi Wang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China.,Medical College of Qingdao University, Qingdao, 266021, Shandong, People's Republic of China
| | - Shi-Jun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, 014040, People's Republic of China
| | - Yan-Xin Yin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Qiong-Jie Mi
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China
| | - Yu-Qiang Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China.
| | - Zong-Yong Zhang
- Key Lab of Cerebral Microcirculation of Shandong, First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Bach A, Conzen C, Schubert GA, Bleilevens C, Lindauer U. Acute changes of pro-inflammatory markers and corticosterone in experimental subarachnoid haemorrhage: A prerequisite for severity assessment. PLoS One 2019; 14:e0220467. [PMID: 31361786 PMCID: PMC6667150 DOI: 10.1371/journal.pone.0220467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Many details of the pathophysiology of subarachnoid haemorrhage (SAH) still remain unknown, making animal experiments an indispensable tool for assessment of diagnostics and therapy. For animal protection and project authorization, one needs objective measures to evaluate the severity and burden in each model. Corticosterone is described as a sensitive stress parameter reflecting the acute burden, and inflammatory markers can be used for assessment of the extent of the brain lesion. However, the brain lesion itself may activate the hypothalamic-pituitary-adrenal-axis early after SAH, as shown for ischemic stroke, probably interfering with early inflammatory processes, thus complicating the assessment of severity and burden on the basis of corticosterone and inflammation. To assess the suitability of these markers in SAH, we evaluated the courses of corticosterone, IL-6 and TNF-α up to 6h in an acute model simulating SAH in continuously anaesthetized rats, lacking the pain and stress induced impact on these parameters. Animals were randomly allocated to sham or SAH. SAH was induced by cisterna magna blood-injection, and intracranial pressure and cerebral blood flow were measured under continuous isoflurane/fentanyl anaesthesia. Withdrawn at predetermined time points, blood was analysed by commercial ELISA kits. After 6h the brain was removed for western blot analysis of IL-6 and TNF-α. Serum corticosterone levels were low with no significant difference between sham and SAH. No activation of the HPA-axis was detectable, rendering corticosterone a potentially useful parameter for stress assessment in future chronic studies. Blood IL-6 and TNF-α increased in both groups over time, with IL-6 increasing significantly more in SAH compared to sham towards the end of the observation period. In the basal cortex, IL-6 and TNF-α increased only in SAH. The pro-inflammatory response seems to start locally in the brain, reflected by an increase in peripheral blood. An additional surgery-induced systemic inflammatory response should be considered.
Collapse
Affiliation(s)
- Annika Bach
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Catharina Conzen
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany.,Department of Neurosurgery, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | | | - Christian Bleilevens
- Department of Anaesthesiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany.,Department of Neurosurgery, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| |
Collapse
|
18
|
MCC950 attenuated early brain injury by suppressing NLRP3 inflammasome after experimental SAH in rats. Brain Res Bull 2019; 146:320-326. [DOI: 10.1016/j.brainresbull.2019.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
|
19
|
Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, Wu P, Xu W, Zuo Y, Peng J, Zuo G, Chen L, Tang J, Zhang JH, Jiang Y. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol 2019; 21:101121. [PMID: 30703614 PMCID: PMC6351270 DOI: 10.1016/j.redox.2019.101121] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
White matter injury (WMI) is associated with motor deficits and cognitive dysfunctions in subarachnoid hemorrhage (SAH) patients. Therapeutic strategy targeting WMI would likely improve the neurological outcomes after SAH. Low-density lipoprotein receptor-related protein-1 (LRP1), a scavenger receptor of apolipoprotein E (apoE), is able to modulate microglia polarization towards anti-inflammatory M2 phenotypes during inflammatory and oxidative insult. In the present study, we investigated the effects of LRP1 activation on WMI and underlying mechanisms of M2 microglial polarization in a rat model of SAH. Two hundred and seventeen male Sprague Dawley rats (weight 280-330 g) were used. SAH was induced by endovascular perforation. LPR1 ligand, apoE-mimic peptide COG1410 was administered intraperitoneally. Microglial depletion kit liposomal clodronate (CLP), LPR1 siRNA or PI3K inhibitor were administered intracerebroventricularly. Post-SAH assessments included neurobehavioral tests, brain water content, immunohistochemistry, Golgi staining, western blot and co-immunoprecipitation. SAH induced WMI shown as the accumulation of amyloid precursor protein and neurofilament heavy polypeptide as well as myelin loss. Microglial depletion by CLP significantly suppressed WMI after SAH. COG1410 reduced brain water content, increased the anti-inflammatory M2 microglial phenotypes, attenuated WMI and improved neurological function after SAH. LRP1 was bound with endogenous apoE and intracellular adaptor protein Shc1. The benefits of COG1410 were reversed by LPR1 siRNA or PI3K inhibitor. LRP1 activation attenuated WMI and improved neurological function by modulating M2 microglial polarization at least in part through Shc1/PI3K/Akt signaling in a rat model of SAH. The apoE-mimic peptide COG1410 may serve as a promising treatment in the management of SAH patients.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Pei Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuchun Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
20
|
Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N, Ohkuma H. The Role of Oxidative Stress in Microvascular Disturbances after Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:684-694. [PMID: 30628008 DOI: 10.1007/s12975-018-0685-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023]
Abstract
Oxidative stress was shown to play a crucial role in the diverse pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Microcirculatory dysfunction is thought to be an important and fundamental pathological change in EBI. However, other than blood-brain barrier (BBB) disruption, the influence of oxidative stress on microvessels remains to be elucidated. The aim of this study was to investigate the role of oxidative stress on microcirculatory integrity in EBI. SAH was induced in male Sprague-Dawley rats using an endovascular perforation technique. A free radical scavenger, edaravone, was administered prophylactically by intraperitoneal injection. SAH grade, neurological score, brain water content, and BBB permeability were measured at 24 h after SAH induction. In addition, cortical samples taken at 24 h after SAH were analyzed to explore oxidative stress, microvascular mural cell apoptosis, microspasm, and microthrombosis. Edaravone treatment significantly ameliorated neurological deficits, brain edema, and BBB disruption. In addition, oxidative stress-induced modifications and subsequent apoptosis of microvascular endothelial cells and pericytes increased after SAH induction, while the administration of edaravone suppressed this. Consistent with apoptotic cell inhibition, microthromboses were also inhibited by edaravone administration. Oxidative stress plays a pivotal role in the induction of multiple pathological changes in microvessels in EBI. Antioxidants are potential candidates for the treatment of microvascular disturbances after SAH.
Collapse
Affiliation(s)
- Toshio Fumoto
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Takeshi Katagai
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuchen Li
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Norihito Shimamura
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan.
| |
Collapse
|