1
|
Liu P, Han C, Zhang T, Xu Y, Yang K, Li Y, Ye Z, Wang C, Zhang H. Alterations of oscillatory activity and cognitive function after aneurysmal subarachnoid hemorrhage. Int J Surg 2025; 111:1919-1928. [PMID: 39715156 DOI: 10.1097/js9.0000000000002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) can lead to cognitive impairment (CI), but underlying neural mechanisms remain to be elucidated. MATERIALS AND METHODS To predict long-term CI after aSAH, resting electroencephalography (EEG) was measured in 112 patients hospitalized with a diagnosis of aSAH ( n = 66) or unruptured intracranial aneurysms (controls) ( n = 46). A neuropsychological battery was administered 8-24 months after discharge. RESULTS Power spectrum analysis in the parietal-occipital lobe showed significantly higher power theta vs. alpha oscillations in patients with CI after aSAH. The power of theta and alpha oscillations were significantly correlated with multiple cognitive scale scores on the neuropsychological battery. A neural model was established, which showed that connectivity between inhibitory and excitatory neurons in neural circuits contributed to changes in theta and alpha oscillations and CI in aSAH. CONCLUSION The data collection, analysis, and computational model established in this study can serve as a new paradigm for other clinical studies investigating CI.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueqiao Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University School of Public Health, Beijing, China
| | - Yuxia Li
- Department of Neurology, Tangshan Central Hospital, Tangshan, China
| | - Zhennan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, College of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Liu P, Li R, Zhang T, Xu Y, Yang K, Li Y, Han C, Yang Y, Wang C, Lu J, Zhang H. Multimodal assessment predicts cognitive impairment after aneurysmal subarachnoid hemorrhage: a prospective cohort study. Int J Surg 2025; 111:1977-1987. [PMID: 39869387 DOI: 10.1097/js9.0000000000002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH. MATERIALS AND METHODS 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study. Neuropsychological tests were administered 7 to 24 months post-discharge. MRI, ERP, and CSF and plasma biomarkers were used to predict long-term CI, and area under ROC curves were calculated. RESULTS Patients with aSAH CI showed significant impairment across composite scores and cognitive domains on the neuropsychological battery vs. patients with aSAH No CI. On ALFF (MRI), the right medial orbitofrontal cortex (AUC = 0.78), right inferior frontal gyrus (AUC = 0.848), and right inferior parietal lobule (AUC = 0.868) distinguished aSAH CI from aSAH No CI. For ERP, consistent changes were found across specific EEG electrodes (FP1, F3, CP1, FP2, F4, CP2), including increased PA, prolonged PL and decreased ITPC. ITPC showed the highest sensitivity for distinguishing aSAH CI from aSAH No CI, followed by PA. Channel F4 (ITPC, AUC = 0.912, PA, AUC = 0.846), corresponding to the right inferior frontal gyrus, was the most sensitive for detecting CI, followed by channel CP2 (ITPC, AUC = 0.903, PA, AUC = 0.806), corresponding to the right inferior parietal lobule. CSF (Aβ42, Aβ40, p-tau181/Aβ42, p-tau181/total-tau, total-tau) and plasma biomarkers (Aβ-40, p-tau181) were significantly associated with long-term CI. CONCLUSION ALFF, ERP, and CSF and plasma Aβ and tau levels and ratios have clinical utility for evaluating and predicting long-term cognitive impairment following aSAH. MRI may reveal the pathogenesis of cognitive impairment following aSAH. ERP can be administered at the bedside offering sensitive, non-invasive, repeatable, and sustainable monitoring, which is particularly suitable for immobile coma patients. ERP may represent a promising method to monitor neural function and its outcomes.
Collapse
Affiliation(s)
- Peng Liu
- Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Tongyu Zhang
- Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueqiao Xu
- Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University School of Public Health, Beijing, China
| | - Yuxia Li
- Department of neurology, Tangshan central hospital, Tangshan, China
| | - Chuanliang Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Changming Wang
- Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, College of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Hongqi Zhang
- Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Lu W, Chu H, Yang C, Li X. Transcription factor EB (TFEB) promotes autophagy in early brain injury after subarachnoid hemorrhage in rats. Neurosurg Rev 2024; 47:741. [PMID: 39375262 DOI: 10.1007/s10143-024-02879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
Subarachnoid hemorrhage (SAH) has high mortality. Early brain injury (EBI) is responsible for unfavorable outcomes for patients with SAH. The protective involvement of autophagy in hemorrhagic stroke has been proposed. The transcription factor EB (TFEB) can increase autophagic flux by promoting autophagosome formation and autophagosome-lysosome fusion, and dysregulation of TFEB activity might induce the development of several diseases. However, the biological functions of TFEB in EBI after SAH remain unknown. We established an animal model of SAH by the modified endovascular perforation method. Expression of TFEB and autophagy required genes was measured by western blotting and immunofluorescence staining. SAH grading, brain water content and neurobehavioral functions were evaluated at 24 h post-SAH. Neuronal apoptosis in cerebral cortex was assessed by TUNEL staining and Fluoro Jade B staining. TFEB was downregulated in SAH rats, and its overexpression reduced brain edema and ameliorated neurological deficits of SAH rats. Additionally, the neuronal apoptosis induced by SAH was inhibited by TFEB overexpression. Moreover, TFEB overexpression promoted autophagy after SAH. TFEB overexpression promotes autophagy to inhibit neuronal apoptosis, brain edema and neurological deficits post-SAH.
Collapse
Affiliation(s)
- Wenqi Lu
- Department of Anesthesiology, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Haichao Chu
- Department of Anesthesiology, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Chunchen Yang
- Department of Anesthesiology, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Xiaoxu Li
- Department of Neurosurgery, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
| |
Collapse
|
4
|
Wroe W, Dienel A, Hong S, Matsumura K, Guzman J, Torres K, Bernal A, Zeineddine HA, Pandit PT, Blackburn SL, McBride DW. Incidence and Factors in Delayed Neurological Deficits after Subarachnoid Hemorrhage in Mice. BRAIN HEMORRHAGES 2024; 5:99-106. [PMID: 39830728 PMCID: PMC11741540 DOI: 10.1016/j.hest.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background Delayed cerebral ischemia (DCI) is one of the most feared complications in aneurysmal subarachnoid hemorrhage (SAH). Animal models are crucial to studying the disease mechanisms and potential treatments. DCI in rodents was thought to not exist; herein we examine literature and our experience with DCI in rodents. Methods Daily behavioral performance was assessed every day from day 1 to up to 7 days post-SAH on mice from 5 different studies that used the endovascular perforation model. Performance was graded using an 8-test sensorimotor neuroscore previously described. The daily neuroscore was then used to identify the incidence and timing of delayed neurological deficits, a clinical surrogate for DCI. A total number of 298 mice (134 males, 164 females) were subjected to SAH. Fifty-one mice had histological staining done to identify infarct volume. Results The overall incidence of DND was 33.9%; 27.6% in males and 39.0% in females, but this difference was not statistically significant. The overall incidence of delayed death was 21.1%, and there was no significant difference for delayed mortality in females versus male mice. There is a non-statistically significant trend towards increased infarct volume in mice suffering DND. Conclusions Mice with endovascular puncture induced SAH develop DND at rates comparable to human patients. Future work needs to correlate the DND seen with decreased regional cerebral blood flow, another hallmark of DCI, but in spite of this need, researchers may use the murine models to test therapies for DCI after SAH.
Collapse
Affiliation(s)
- William Wroe
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kanako Matsumura
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Hussein A. Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peeyush Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Hao X, Zeng Z, Liang L, Feng Z, Li W, Xiong B, Guo P, Zhang Q, Chen Y, Feng H, Chen Z. The Role of Neutrophil Extracellular Traps in Early Microthrombosis and Brain Injury After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2023; 14:752-765. [PMID: 35962915 PMCID: PMC9375080 DOI: 10.1007/s12975-022-01074-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Microthrombosis plays an important role in secondary brain injury after experimental subarachnoid hemorrhage (SAH), but the specific mechanism of microthrombosis remains unclear. The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs) in microthrombosis after SAH. SAH was induced in male C57BL/6 mice using an endovascular perforation technique. The marker protein of NETs, citrullinated histone H3 (CitH3), was significantly elevated in the cerebral cortex after SAH, and was co-labeled with microthrombi. Both depletion of neutrophils by anti-Ly6G antibody and DNase I treatment significantly reduced the formation of NETs and microthrombi, and ameliorated neurological deficits, brain edema, BBB disruption, and neuronal injury at 24 h after SAH induction. Cerebral hypoperfusion in the first hours after SAH is a major determinant of poor neurological outcome; in this study, we found that DNase I treatment significantly improved the restoration of early cortical perfusion after SAH. In addition, DNase I treatment also significantly attenuated cerebrospinal fluid (CSF) flow after SAH, which was associated with the diffusion barrier caused by microthrombi in the paravascular space after SAH. In conclusion, NETs are associated with early microthrombosis after SAH; they may be a novel therapeutic target for early brain injury (EBI) after SAH.
Collapse
Affiliation(s)
- Xiaoke Hao
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
- Department of Neurosurgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Zongwei Zeng
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Liang Liang
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Wu Li
- Department of Geriatrics and Special Service Medicine, Southwest Hospital, Army Military Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Binyuan Xiong
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Peiwen Guo
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Qiang Zhang
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Army Military Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
6
|
Reder SR, Lückerath S, Neulen A, Beiser KU, Grauhan NF, Othman AE, Brockmann MA, Brockmann C, Kronfeld A. DSA-Based 2D Perfusion Measurements in Delayed Cerebral Ischemia to Estimate the Clinical Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage: A Technical Feasibility Study. J Clin Med 2023; 12:4135. [PMID: 37373828 DOI: 10.3390/jcm12124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: To predict clinical outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI) by assessment of the cerebral perfusion using a 2D perfusion angiography (2DPA) time-contrast agent (CA) concentration model. (2) Methods: Digital subtraction angiography (DSA) data sets of n = 26 subjects were acquired and post-processed focusing on changes in contrast density using a time-concentration model at three time points: (i) initial presentation with SAH (T0); (ii) vasospasm-associated acute clinical impairment (T1); and (iii) directly after endovascular treatment (T2) of SAH-associated large vessel vasospasm (LVV), which resulted in n = 78 data sets. Maximum slope (MS in SI/ms), time-to-peak (TTP in ms), and maximum amplitude of a CA bolus (dSI) were measured in brain parenchyma using regions of interest (ROIs). First, acquired parameters were standardized to the arterial input function (AIF) and then statistically analyzed as mean values. Additionally, data were clustered into two subsets consisting of patients with regredient or with stable/progredient symptoms (or Doppler signals) after endovascular treatment (n = 10 vs. n = 16). (3) Results: Perfusion parameters (MS, TTP, and dSI) differed significantly between T0 and T1 (p = 0.003 each). Significant changes between T1 and T2 were only detectable for MS (0.041 ± 0.016 vs. 0.059 ± 0.026; p = 0.011) in patients with regredient symptoms at T2 (0.04 ± 0.012 vs. 0.066 ± 0.031; p = 0.004). For dSI, there were significant differences between T0 and T2 (5095.8 ± 2541.9 vs. 3012.3 ± 968.3; p = 0.001), especially for those with stable symptoms at T2 (5685.4 ± 2967.2 vs. 3102.8 ± 1033.2; p = 0.02). Multiple linear regression analysis revealed that a) the difference in MS between T1 and T2 and b) patient's age (R = 0.6; R2 = 0.34; p = 0.009) strongly predict the modified Rankin Scale (mRS) at discharge. (4) Conclusions: 2DPA allows the direct measurement of treatment effects in SAH associated DCI and may be used to predict outcomes in these critically ill patients.
Collapse
Affiliation(s)
- Sebastian R Reder
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Steffen Lückerath
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Katja U Beiser
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Nils F Grauhan
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Krämer TJ, Pickart F, Pöttker B, Gölz C, Neulen A, Pantel T, Goetz H, Ritter K, Schäfer MKE, Thal SC. Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice. Sci Rep 2023; 13:4348. [PMID: 36928073 PMCID: PMC10018640 DOI: 10.1038/s41598-023-30421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Florian Pickart
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Cell Biology Unit, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
8
|
Meyer S, Hummel R, Neulen A, Hirnet T, Thal SC. Influence of traumatic brain injury on ipsilateral and contralateral cortical perfusion in mice. Neurosci Lett 2023; 795:137047. [PMID: 36603737 DOI: 10.1016/j.neulet.2023.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death in young adults. After brain injury cortical perfusion is impaired by cortical spreading depression, cerebral microvasospasm or microvascular thrombosis and contributes to secondary expansion of lesion into surrounding healthy brain tissue. The present study was designed to determine the regional cortical perfusion pattern after experimental TBI induced by controlled cortical impact (CCI) in male C57/BL6N mice. We performed a longitudinal time series analysis by Laser speckle contrast imaging (LSCI). Measurements were carried out before, immediately and 24 h after trauma. Immediately after CCI cortical perfusion in the lesion core dropped to 10 % of before injury (baseline; %BL) and to 21-24 %BL in the cortical area surrounding the core. Interestingly, cortical perfusion was also significantly reduced in the contralateral non-injured hemisphere (41-58 %BL) matching the corresponding brain region of the injured hemisphere. 24 h after CCI perfusion of the contralateral hemisphere returned to baseline level in the area corresponding to the lesion core, whereas the lateral area of the parietal cortex was hyperperfused (125 %BL). The lesion core region itself remained severely hypoperfused (18 to 26 %BL) during the observation period. TBI causes a maldistribution of both ipsi- and contralateral cerebral perfusion immediately after trauma, which persist for at least 24 h. Higher perfusion levels in the lesion core 24 h after trauma were associated with increased tissue damage, which supports the role of reperfusion injury for secondary brain damage after TBI.
Collapse
Affiliation(s)
- Simon Meyer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Tobias Hirnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; Department of Anesthesiology, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Heusnerstraße 40, 42283 Wuppertal, Germany.
| |
Collapse
|
9
|
Weyer V, Maros ME, Kirschner S, Krost-Reuhl S, Groden C, Kramer M, Brockmann MA, Kronfeld A. Influence of neurovascular anatomy on perforation site in different mouse strains using the filament perforation model for induction of subarachnoid hemorrhage. PLoS One 2022; 17:e0263983. [PMID: 36227879 PMCID: PMC9560502 DOI: 10.1371/journal.pone.0263983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Filament perforation is a widely-used method to induce subarachnoid hemorrhage (SAH) in mice. Whereas the perforation site has been assumed to be in the branching of middle cerebral artery (MCA) and anterior cerebral artery (ACA), we recently observed more proximal perforations. METHODS Filament perforation was performed in CD1- (n = 10) and C57Bl/6N-mice (n = 9) ex vivo. The filament was left in place and the perforation site was microscopically assessed. Digital subtraction angiography (DSA) was performed in CD1- (n = 9) and C57Bl/6J-mice (n = 29) and anatomical differences of the internal carotid artery (ICA) were determined. RESULTS Whereas in C57Bl/6N-mice perforation occurred in the proximal intracranial ICA in 89% (n = 8), in CD1-mice the perforation site was in the proximal ICA in 50% (n = 5), in the branching between MCA and ACA in 40% (n = 4), and in the proximal ACA in 10% (n = 1). DSA revealed a stronger angulation (p<0.001) of the ICA in CD1-mice (163.5±2.81°) compared to C57Bl/6J-mice (124.5±5.49°). Body weight and ICA-angle showed no significant correlation in C57Bl/6J- (r = -0.06, pweight/angle = 0.757) and CD1-mice (r = -0.468, pweight/angle = 0.242). CONCLUSION Filament perforation in mice occurs not only at the hitherto presumed branching between MCA and ACA, but seems to depend on mouse strain and anatomy as the proximal intracranial ICA may also be perforated frequently.
Collapse
Affiliation(s)
- Vanessa Weyer
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Mannheim, Germany
- Medical Faculty Mannheim, Department of Radiation Oncology, University of Heidelberg, Mannheim, Germany
| | - Máté E. Maros
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Mannheim, Germany
| | - Stefanie Kirschner
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- Medical Faculty Mannheim, Department of Radiation Oncology, University of Heidelberg, Mannheim, Germany
| | | | - Christoph Groden
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Mannheim, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- * E-mail:
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
10
|
Dienel A, Hong SH, Guzman J, Peeyush KT, Blackburn SL, McBride DW. Confirming Subarachnoid Hemorrhage Induction in the Endovascular Puncture Mouse Model. BRAIN HEMORRHAGES 2022; 3:111-116. [PMID: 39831000 PMCID: PMC11741539 DOI: 10.1016/j.hest.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Background and Purpose Experimental studies of subarachnoid hemorrhage (SAH) using the endovascular perforation model routinely use either cerebral blood flow (CBF) or intracranial pressure (ICP) monitoring to confirm SAH induction. We designed this study to test the hypothesis that contralateral CBF is a better marker of SAH induction than ipsilateral CBF. Methods Sixty-eight adult C57BL/6J mice were subjected to endovascular perforation. Mice were monitored using laser Doppler (for relative CBF) or ICP probes. Results The ipsilateral CBF significantly decreased prior to ICP rising. However, reduction of the CBF in the contralateral hemisphere occurred at the same time as the rise in ICP. When CBF is monitored on both hemispheres simultaneously, the drop in ipsilateral CBF precedes the drop in the contralateral CBF. Conclusions The most suitable method for confirming puncture and induction of SAH in the endovascular mouse model is by ICP. Monitoring the CBF of the contralateral hemisphere is also able to detect the moment of SAH induction. However, monitoring the ipsilateral CBF is not satisfactory for determining puncture and induction of SAH due to the changes in CBF caused by blood flow occlusion from the endovascular filament as it enters into the circle of Willis.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sung-Ha Hong
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kumar T. Peeyush
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
The role of autophagy and apoptosis in early brain injury after subarachnoid hemorrhage: an updated review. Mol Biol Rep 2022; 49:10775-10782. [PMID: 35819555 DOI: 10.1007/s11033-022-07756-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a worldwide devastating type of stroke with high mortality and morbidity. Accumulating evidence show early brain injury (EBI) as the leading cause of mortality after SAH. The pathological processes involved in EBI include decreased cerebral blood flow, increased intracranial pressure, vasospasm, and disruption of the blood-brain barrier. In addition, neuroinflammation, oxidative stress, apoptosis, and autophagy have also been proposed to contribute to EBI. Among the various processes involved in EBI, neuronal apoptosis has been proven to be a key factor contributing to the poor prognosis of SAH patients. Meanwhile, as another important catabolic process maintaining the cellular and tissue homeostasis, autophagy has been shown to be neuroprotective after SAH. Studies have shown that enhancing autophagy reduced apoptosis, whereas inhibiting autophagy aggravate neuronal apoptosis after SAH. The physiological substrates and mechanisms of neuronal autophagy and apoptosis by which defects in neuronal function are largely unknown. In this review, we summarize and discuss the role of autophagy and apoptosis after SAH and contribute to further study for investigation of the means to control the balance between them.
Collapse
|
12
|
Kramer A, Selbach M, Kerz T, Neulen A, Brockmann MA, Ringel F, Brockmann C. Continuous Intraarterial Nimodipine Infusion for the Treatment of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Retrospective, Single-Center Cohort Trial. Front Neurol 2022; 13:829938. [PMID: 35370871 PMCID: PMC8964957 DOI: 10.3389/fneur.2022.829938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Background Delayed cerebral ischemia (DCI) occurs after aneurysmal subarachnoid hemorrhage (aSAH). Continuous intraarterial nimodipine infusion (CIAN) is a promising approach in patients with intracranial large vessel vasospasm (LVV). The objective of this retrospective single-center cohort study was to evaluate the outcome in aSAH-patients treated with CIAN. Methods CIAN was initiated and ended based on the clinical evaluation and transcranial Doppler (TCD), CT-angiography, CT-perfusion (PCT), and digital subtraction angiography (DSA). Nimodipine (0.5–2.0 mg/h) was administered continuously through microcatheters placed in the extracranial internal carotid and/or vertebral artery. Primary outcome measures were Glasgow Outcome Scale (GOS) at discharge and within 1 year after aSAH, and the occurrence of minor and major (<⅓ and >⅓ of LVV-affected territory) DCI-related infarctions in subsequent CT/MRI-scans. Secondary outcome measures were CIAN-associated complications. Results A total of 17 patients underwent CIAN. Median onset of CIAN was 9 (3–13) days after aSAH, median duration was 5 (1–13) days. A favorable outcome (GOS 4–5) was achieved in 9 patients (53%) at discharge and in 13 patients within 1 year (76%). One patient died of posthemorrhagic cerebral edema. Minor cerebral infarctions occurred in five and major infarctions in three patients. One patient developed cerebral edema possibly due to CIAN. Normalization of PCT-parameters within 2 days was observed in 9/17 patients. Six patients showed clinical response and thus did not require PCT imaging. Conclusion The favorable outcome in 76% of patients after 1 year is in line with previous studies. CIAN thus may be used to treat patients with severe therapy-refractory DCI.
Collapse
Affiliation(s)
- Andreas Kramer
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Moritz Selbach
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Kerz
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
13
|
Neulen A, Molitor M, Kosterhon M, Pantel T, Holzbach E, Rudi WS, Karbach SH, Wenzel P, Ringel F, Thal SC. Correlation of cardiac function and cerebral perfusion in a murine model of subarachnoid hemorrhage. Sci Rep 2021; 11:3317. [PMID: 33558609 PMCID: PMC7870815 DOI: 10.1038/s41598-021-82583-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebral hypoperfusion is a key factor for determining the outcome after subarachnoid hemorrhage (SAH). A subset of SAH patients develop neurogenic stress cardiomyopathy (NSC), but it is unclear to what extent cerebral hypoperfusion is influenced by cardiac dysfunction after SAH. The aims of this study were to examine the association between cardiac function and cerebral perfusion in a murine model of SAH and to identify electrocardiographic and echocardiographic signs indicative of NSC. We quantified cortical perfusion by laser SPECKLE contrast imaging, and myocardial function by serial high-frequency ultrasound imaging, for up to 7 days after experimental SAH induction in mice by endovascular filament perforation. Cortical perfusion decreased significantly whereas cardiac output and left ventricular ejection fraction increased significantly shortly post-SAH. Transient pathological ECG and echocardiographic abnormalities, indicating NSC (right bundle branch block, reduced left ventricular contractility), were observed up to 3 h post-SAH in a subset of model animals. Cerebral perfusion improved over time after SAH and correlated significantly with left ventricular end-diastolic volume at 3, 24, and 72 h. The murine SAH model is appropriate to experimentally investigate NSC. We conclude that in addition to cerebrovascular dysfunction, cardiac dysfunction may significantly influence cerebral perfusion, with LVEDV presenting a potential parameter for risk stratification.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Michael Molitor
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Elisa Holzbach
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Wolf-Stephan Rudi
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Susanne H Karbach
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany. .,Center for Molecular Surgical Research (MFO), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Matsumura K, Kumar TP, Guddanti T, Yan Y, Blackburn SL, McBride DW. Neurobehavioral Deficits After Subarachnoid Hemorrhage in Mice: Sensitivity Analysis and Development of a New Composite Score. J Am Heart Assoc 2020; 8:e011699. [PMID: 30971151 PMCID: PMC6507191 DOI: 10.1161/jaha.118.011699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Because of the failure of numerous clinical trials, various recommendations have been made to improve the usefulness of preclinical studies. Specifically, the STAIR (Stroke Therapy Academic Industry Roundtable) recommendations highlighted functional outcome as a critical measure. Recent reviews of experimental subarachnoid hemorrhage (SAH) studies have brought to light the numerous neurobehavioral scoring systems that are used in preclinical SAH studies. To gain insight into the utility of these scoring systems, as well as to identify a scoring system that best captures the deficits caused by SAH in mice, we designed the current study. Methods and Results Adult male C57BL/6J mice were used. One cohort of mice was randomly allocated to either sham or SAH and had functional testing performed on days 1 to 3 post‐SAH using the modified Bederson Score, Katz Score, Garcia Neuroscore, and Parra Neuroscore, as well as 21 individual subtests. A new composite neuroscore was developed using the 8 most diagnostically accurate subtests. To validate the use of the developed composite neuroscore, another cohort of mice was randomly assigned to either the sham or SAH group and neurobehavior was evaluated on days 1 to 3, 5, and 7 after injury. Receiver operating characteristic curves were used to analyze the diagnostic accuracy of each scoring system, as well as the subtests. Of the 4 published scoring systems, the Parra Neuroscore was diagnostically accurate for SAH injury in mice versus the modified Bederson and Katz Scores, but not the Garcia Neuroscore. However, the newly developed composite neuroscore was found to be statistically more diagnostically accurate than even the Parra Neuroscore. Conclusions The findings of this study promote use of the newly developed composite neuroscore for experimental SAH studies in mice.
Collapse
Affiliation(s)
- Kanako Matsumura
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - T Peeyush Kumar
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Tejesh Guddanti
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Yuanqing Yan
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Spiros L Blackburn
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Devin W McBride
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
15
|
Neulen A, Kunzelmann S, Kosterhon M, Pantel T, Stein M, Berres M, Ringel F, Brockmann MA, Brockmann C, Kantelhardt SR. Automated Grading of Cerebral Vasospasm to Standardize Computed Tomography Angiography Examinations After Subarachnoid Hemorrhage. Front Neurol 2020; 11:13. [PMID: 32082241 PMCID: PMC7002561 DOI: 10.3389/fneur.2020.00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Computed tomography angiography (CTA) is frequently used with computed tomography perfusion imaging (CTP) to evaluate whether endovascular vasospasm treatment is indicated for subarachnoid hemorrhage patients with delayed cerebral ischemia. However, objective parameters for CTA evaluation are lacking. In this study, we used an automated, investigator-independent, digital method to detect vasospasm, and we evaluated whether the method could predict the need for subsequent endovascular vasospasm treatment. Methods: We retrospectively reviewed the charts and analyzed imaging data for 40 consecutive patients with subarachnoid hemorrhages. The cerebrovascular trees were digitally reconstructed from CTA data, and vessel volume and the length of the arteries of the circle of Willis and their peripheral branches were determined. Receiver operating characteristic curve analysis based on a comparison with digital subtraction angiographies was used to determine volumetric thresholds that indicated severe vasospasm for each vessel segment. Results: The automated threshold-based volumetric evaluation of CTA data was able to detect severe vasospasm with high sensitivity and negative predictive value for predicting cerebral hypoperfusion on CTP, although the specificity and positive predictive value were low. Combining the automated detection of vasospasm on CTA and cerebral hypoperfusion on CTP was superior to CTP or CTA alone in predicting endovascular vasospasm treatment within 24 h after the examination. Conclusions: This digital volumetric analysis of the cerebrovascular tree allowed the objective, investigator-independent detection and quantification of vasospasms. This method could be used to standardize diagnostics and the selection of subarachnoid hemorrhage patients with delayed cerebral ischemia for endovascular diagnostics and possible interventions.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Svenja Kunzelmann
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Maximilian Stein
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Manfred Berres
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Sven R Kantelhardt
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
16
|
Staib-Lasarzik I, Nagel N, Sebastiani A, Griemert EV, Thal SC. Analgesic treatment limits surrogate parameters for early stress and pain response after experimental subarachnoid hemorrhage. BMC Neurosci 2019; 20:49. [PMID: 31533626 PMCID: PMC6751841 DOI: 10.1186/s12868-019-0531-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background In animal research, authorities require a classification of anticipated pain levels and a perioperative analgesia protocol prior to approval of the experiments. However, data on this topic is rare and so is the reported use of analgesics. We determined surrogate parameters of pain and general well-being after subarachnoid hemorrhage (SAH), as well as the potential for improvement by different systemic analgesia paradigms. Brain injury was induced by filament perforation to mimic SAH. Sham-operated mice were included as surgical control groups with either neck or no-neck preparation. Mice with controlled cortical impact (CCI) injury were included as a control group with traumatic brain injury (TBI), but without neck preparation. Mice were randomized to buprenorphine, carprofen, meloxicam, or vehicle treatment. 24 h after SAH, CCI or sham surgery, pain and stress levels were assessed with a visual assessment score and the amount of food intake was recorded. Results Neck preparation, which is required to expose the surgical field for SAH induction, already increased pain/stress levels and sham surgeries for both CCI and SAH reduced food intake. Pain/stress levels were higher and food intake was lower after SAH compared with CCI. Pain/stress levels after CCI without analgesic treatment were similar to levels after SAH sham surgery. Pain treatment with buprenorphine was effective to reduce pain after SAH, whereas lower pain/stress intensity levels after CCI were not improved. Conclusion This study emphasizes the importance of pain and stress assessment after surgeries and the efficacy of buprenorphine to improve pain and comfort levels after experimental SAH.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Nadine Nagel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
17
|
Sun C, Enkhjargal B, Reis C, Zhang T, Zhu Q, Zhou K, Xie Z, Wu L, Tang J, Jiang X, Zhang JH. Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK-ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells 2019; 8:cells8090980. [PMID: 31461955 PMCID: PMC6769958 DOI: 10.3390/cells8090980] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 01/31/2023] Open
Abstract
Osteopontin (OPN) enhances autophagy, reduces apoptosis, and attenuates early brain injury (EBI) after a subarachnoid hemorrhage (SAH). A total of 87 Sprague–Dawley rats were subjected to sham or SAH operations to further investigate the signaling pathway involved in osteopontin-enhanced autophagy during EBI, and the potential effect of recombinant OPN (rOPN) administration to improve long-term outcomes after SAH. Rats were randomly divided into five groups: Sham, SAH + Vehicle (PBS, phosphate-buffered saline), SAH + rOPN (5 μg/rat recombinant OPN), SAH + rOPN + Fib-14 (30 mg/kg of focal adhesion kinase (FAK) inhibitor-14), and SAH + rOPN + DMSO (dimethyl sulfoxide). Short-term and long-term neurobehavior tests were performed, followed by a collection of brain samples for assessment of autophagy markers in neurons, pathway proteins expression, and delayed hippocampal injury. Western blot, double immunofluorescence staining, Nissl staining, and Fluoro-Jade C staining assay were used. Results showed that rOPN administration increased autophagy in neurons and improved neurobehavior in a rat model of SAH. With the administration of FAK inhibitor-14 (Fib-14), neurobehavioral improvement and autophagy enhancement induced by rOPN were abolished, and there were consistent changes in the phosphorylation level of ERK1/2. In addition, early administration of rOPN in rat SAH models improved long-term neurobehavior results, possibly by alleviating hippocampal injury. These results suggest that FAK–ERK signaling may be involved in OPN-enhanced autophagy in the EBI phase after SAH. Early administration of rOPN may be a preventive and therapeutic strategy against delayed brain injury after SAH.
Collapse
Affiliation(s)
- Chengmei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Keren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Zhiyi Xie
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA.
| |
Collapse
|
18
|
Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie ZY, Wu LY, Zhang TY, Zhu QQ, Tang JP, Jiang XD, Zhang JH. Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci Ther 2019; 25:1162-1172. [PMID: 31436915 PMCID: PMC6776743 DOI: 10.1111/cns.13199] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aim To determine the effect of osteopontin (OPN) on autophagy and autophagy‐apoptosis interactions after SAH. Methods The endovascular perforation model of SAH or sham surgery was performed in a total of 86 Sprague‐Dawley male rats. The temporal expressions of endogenous OPN and autophagy‐related proteins (Beclin 1, ATG5, LC3 II to I ratio) were measured in sham and SAH rats at different time points (3, 6, 12, 24, and 72 hours). Rats were randomly divided into three groups: Sham, SAH + Vehicle (PBS, phosphate‐buffered saline), and SAH + rOPN (5 μg/rat recombinant OPN). Neurobehavioral tests were performed 24 hours after SAH, followed by the collection of brain samples for assessment of autophagy and apoptosis proteins. These tests assessed whether an autophagy‐apoptosis relationship existed on the histological level in the brain. Results Endogenous OPN and autophagy‐related proteins all increased after SAH. rOPN administration improved neurological dysfunction, increased the expression of autophagy‐related proteins (Beclin 1, ATG5, LC3 II to I ratio) and antiapoptotic protein Bcl‐2, while decreasing the expression of proapoptotic proteins (cleaved Caspase‐3 and Bax). rOPN also regulated autophagy‐apoptosis interactions 24 hours after SAH. Conclusion rOPN attenuates early brain injury and inhibits neuronal apoptosis by activating autophagy and regulating autophagy‐apoptosis interactions.
Collapse
Affiliation(s)
- Cheng-Mei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ke-Ren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Zhi-Yi Xie
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ling-Yun Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Tong-Yu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Qi-Quan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Ji-Ping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Dan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
19
|
Suzuki H. Inflammation: a Good Research Target to Improve Outcomes of Poor-Grade Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:597-600. [PMID: 31214920 DOI: 10.1007/s12975-019-00713-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
20
|
Neutrophils mediate early cerebral cortical hypoperfusion in a murine model of subarachnoid haemorrhage. Sci Rep 2019; 9:8460. [PMID: 31186479 PMCID: PMC6560094 DOI: 10.1038/s41598-019-44906-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Cerebral hypoperfusion in the first hours after subarachnoid haemorrhage (SAH) is a major determinant of poor neurological outcome. However, the underlying pathophysiology is only partly understood. Here we induced neutropenia in C57BL/6N mice by anti-Ly6G antibody injection, induced SAH by endovascular filament perforation, and analysed cerebral cortical perfusion with laser SPECKLE contrast imaging to investigate the role of neutrophils in mediating cerebral hypoperfusion during the first 24 h post-SAH. SAH induction significantly increased the intracranial pressure (ICP), and significantly reduced the cerebral perfusion pressure (CPP). At 3 h after SAH, ICP had returned to baseline and CPP was similar between SAH and sham mice. However, in SAH mice with normal neutrophil counts cortical hypoperfusion persisted. Conversely, despite similar CPP, cortical perfusion was significantly higher at 3 h after SAH in mice with neutropenia. The levels of 8-iso-prostaglandin-F2α in the subarachnoid haematoma increased significantly at 3 h after SAH in animals with normal neutrophil counts indicating oxidative stress, which was not the case in neutropenic SAH animals. These results suggest that neutrophils are important mediators of cortical hypoperfusion and oxidative stress early after SAH. Targeting neutrophil function and neutrophil-induced oxidative stress could be a promising new approach to mitigate cerebral hypoperfusion early after SAH.
Collapse
|
21
|
Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N, Ohkuma H. The Role of Oxidative Stress in Microvascular Disturbances after Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:684-694. [PMID: 30628008 DOI: 10.1007/s12975-018-0685-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023]
Abstract
Oxidative stress was shown to play a crucial role in the diverse pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Microcirculatory dysfunction is thought to be an important and fundamental pathological change in EBI. However, other than blood-brain barrier (BBB) disruption, the influence of oxidative stress on microvessels remains to be elucidated. The aim of this study was to investigate the role of oxidative stress on microcirculatory integrity in EBI. SAH was induced in male Sprague-Dawley rats using an endovascular perforation technique. A free radical scavenger, edaravone, was administered prophylactically by intraperitoneal injection. SAH grade, neurological score, brain water content, and BBB permeability were measured at 24 h after SAH induction. In addition, cortical samples taken at 24 h after SAH were analyzed to explore oxidative stress, microvascular mural cell apoptosis, microspasm, and microthrombosis. Edaravone treatment significantly ameliorated neurological deficits, brain edema, and BBB disruption. In addition, oxidative stress-induced modifications and subsequent apoptosis of microvascular endothelial cells and pericytes increased after SAH induction, while the administration of edaravone suppressed this. Consistent with apoptotic cell inhibition, microthromboses were also inhibited by edaravone administration. Oxidative stress plays a pivotal role in the induction of multiple pathological changes in microvessels in EBI. Antioxidants are potential candidates for the treatment of microvascular disturbances after SAH.
Collapse
Affiliation(s)
- Toshio Fumoto
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Takeshi Katagai
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuchen Li
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Norihito Shimamura
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan.
| |
Collapse
|
22
|
Luh C, Feiler S, Frauenknecht K, Meyer S, Lubomirov LT, Neulen A, Thal SC. The Contractile Apparatus Is Essential for the Integrity of the Blood-Brain Barrier After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2018; 10:534-545. [PMID: 30467816 PMCID: PMC6733822 DOI: 10.1007/s12975-018-0677-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2018] [Accepted: 11/11/2018] [Indexed: 11/27/2022]
Abstract
Development of vasogenic brain edema is a key event contributing to mortality after subarachnoid hemorrhage (SAH). The precise underlying mechanisms at the neurovascular level that lead to disruption of the blood-brain barrier (BBB) are still unknown. Activation of myosin light chain kinases (MLCK) may result in change of endothelial cell shape and opening of the intercellular gap with subsequent vascular leakage. Male C57Bl6 mice were subjected to endovascular perforation. Brain water content was determined by wet-dry ratio and BBB integrity by Evans-Blue extravasation. The specific MLCK inhibitor ML-7 was administered to the mice to determine the role of the contractile apparatus of the neurovascular unit in determining brain water content, BBB integrity, neurofunctional outcome, brain damage, and survival at 7 days after SAH. Inhibition of MLCK significantly reduced BBB permeability (Evans Blue extravasation − 28%) and significantly decreased edema formation in comparison with controls (− 2%). MLCK-treated mice showed reduced intracranial pressure (− 53%), improved neurological outcome at 24 h and 48 h after SAH, and reduced 7-day mortality. Tight junction proteins claudin-5 and zonula occludens-1 levels were not influenced by ML-7 at 24 h after insult. The effect of ML-7 on pMLC was confirmed in brain endothelial cell culture (bEnd.3 cells) subjected to 4-h oxygen-glucose deprivation. The present study indicates that MLCK contributes to blood-brain barrier dysfunction after SAH by a mechanism that does not involve modulation of tight junction protein levels, but via activation of the contractile apparatus of the endothelial cell skeleton. This underlying mechanism may be a promising target for the treatment of SAH.
Collapse
Affiliation(s)
- Clara Luh
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon Meyer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany. .,Center for Molecular Surgical Research (MFO), Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|