1
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
2
|
Kuczeriszka M, Dobrowolski L, Walkowska A, Baranowska I, Sitek JD, Kompanowska-Jezierska E. Role of Ang1-7 in renal haemodynamics and excretion in streptozotocin diabetic rats. Clin Exp Pharmacol Physiol 2021; 49:432-441. [PMID: 34870864 DOI: 10.1111/1440-1681.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
The contribution of angiotensin (1-7) (Ang1-7) to control of extrarenal and renal function may be modified in diabetes. We investigated the effects of Ang1-7 supplementation on blood pressure, renal circulation and intrarenal reactivity (IVR) to vasoactive agents in normoglycaemic (NG) and streptozotocin diabetic rats (DM). In Sprague Dawley DM and NG rats, 3 weeks after streptozotocin (60 mg/kg i.p.) or solvent injection, Ang1-7 was administered (400 ng/min) over the next 2 weeks using subcutaneously implanted osmotic minipumps. For a period of 5 weeks, blood pressure (BP), 24 h water intake and diuresis were determined weekly. In anaesthetised rats, BP, renal total and cortical (CBF), outer (OMBF) and inner medullary (IMBF) perfusion and urine excretion were determined. To check IVR, a short-time infusion of acetylcholine or norepinephrine was randomly given to the renal artery. Unexpectedly, BP did not differ between NG and DM, and this was not modified by Ang-1-7 supplementation. Baseline IMBF was higher in NG vs. DM, and Ang1-7 treatment did not change it in NG but decreased it in DM. In the latter, Ang1-7 increased cortical IVR to vasoconstrictor and vasodilator stimuli. IMBF decrease after high acetylcholine dose seen in untreated NG was reverted to an increase in Ang1-7 treated rats. Irrespective of the glycaemia level, Ang1-7 did not modify BP. However, it impaired medullary circulation in DM, whereas in NG it rendered the medullary vasculature more sensitive to vasodilators. Possibly, the medullary hypoperfusion in DM was mediated by Ang1-7 activation of angiotensin AT-1 receptors which are upregulated by hyperglycaemia.
Collapse
Affiliation(s)
- Marta Kuczeriszka
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Dobrowolski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna D Sitek
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Vecchiatto B, da Silva RC, Higa TS, Muller CR, Américo ALV, Fortunato-Lima VC, Ferreira MM, Martucci LF, Fonseca-Alaniz MH, Evangelista FS. Oxidative phenotype induced by aerobic physical training prevents the obesity-linked insulin resistance without changes in gastrocnemius muscle ACE2-Angiotensin(1-7)-Mas axis. Diabetol Metab Syndr 2021; 13:74. [PMID: 34229719 PMCID: PMC8262010 DOI: 10.1186/s13098-021-00693-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We investigate the effect of aerobic physical training (APT) on muscle morphofunctional markers and Angiotensin Converting Enzyme 2/Angiotensin 1-7/Mas receptor (ACE2/Ang 1-7/Mas) axis in an obesity-linked insulin resistance (IR) animal model induced by cafeteria diet (CAF). METHODS Male C57BL/6J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 10), CHOW-TR (chow diet, trained; n = 10), CAF-SED (n = 10) and CAF-TR (n = 10). APT consisted in running sessions of 60 min at 60% of maximal speed, 5 days per week for 8 weeks. RESULTS Trained groups had lower body weight and adiposity compared with sedentary groups. CAF-TR improved the glucose and insulin tolerance tests compared with CAF-SED group (AUC = 28.896 ± 1589 vs. 35.200 ± 1076 mg dL-1 120 min-1; kITT = 4.1 ± 0.27 vs. 2.5 ± 0.28% min-1, respectively). CHOW-TR and CAF-TR groups increased exercise tolerance, running intensity at which VO2 max was reached, the expression of p-AMPK, p-ACC and PGC1-α proteins compared with CHOW-SED and CAF-SED. Mithocondrial protein expression of Mfn1, Mfn2 and Drp1 did not change. Lipid deposition reduced in CAF-TR compared with CAF-SED group (3.71 vs. 5.53%/area), but fiber typing, glycogen content, ACE2 activity, Ang 1-7 concentration and Mas receptor expression did not change. CONCLUSIONS The APT prevents obesity-linked IR by modifying the skeletal muscle phenotype to one more oxidative independent of changes in the muscle ACE2/Ang 1-7/Mas axis.
Collapse
Affiliation(s)
- Bruno Vecchiatto
- School of Arts, Science and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Ermelino Mattarazzo, São Paulo, SP, CEP 03828-000, Brazil
| | - Rafael C da Silva
- School of Arts, Science and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Ermelino Mattarazzo, São Paulo, SP, CEP 03828-000, Brazil
| | - Talita S Higa
- School of Arts, Science and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Ermelino Mattarazzo, São Paulo, SP, CEP 03828-000, Brazil
| | - Cynthia R Muller
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anna Laura V Américo
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vanessa C Fortunato-Lima
- School of Arts, Science and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Ermelino Mattarazzo, São Paulo, SP, CEP 03828-000, Brazil
| | - Marília M Ferreira
- School of Arts, Science and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Ermelino Mattarazzo, São Paulo, SP, CEP 03828-000, Brazil
| | - Luiz Felipe Martucci
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Fabiana S Evangelista
- School of Arts, Science and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Ermelino Mattarazzo, São Paulo, SP, CEP 03828-000, Brazil.
| |
Collapse
|
4
|
Hypothalamic Renin-Angiotensin System and Lipid Metabolism: Effects of Virgin Olive Oil versus Butter in the Diet. Nutrients 2021; 13:nu13020480. [PMID: 33572630 PMCID: PMC7912484 DOI: 10.3390/nu13020480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has been recently involved in the homeostatic regulation of energy. Our goal was to analyse the influence of a diet rich in saturated fatty acids (butter) against one enriched in monounsaturated fatty acids (olive oil) on hypothalamic RAS, and their relationship with the metabolism of fatty acids. Increases in body weight and visceral fat, together with an increase in aminopeptidase A expression and reductions in AngII and AngIV were observed in the hypothalamus of animals fed with the butter diet. In this group, a marked reduction in the expression of genes related to lipid metabolism (LPL, CD36, and CPT-1) was observed in liver and muscle. No changes were found in terms of body weight, total visceral fat and the expression of hepatic genes related to fatty acid metabolism in the olive oil diet. The expressions of LPL and CD36 were reduced in the muscles, although the decrease was lower than in the butter diet. At the same time, the fasting levels of leptin were reduced, no changes were observed in the hypothalamic expression of aminopeptidase A and decreases were noted in the levels of AngII, AngIV and AngIII. These results support that the type of dietary fat is able to modify the hypothalamic profile of RAS and the body energy balance, related to changes in lipid metabolism.
Collapse
|
5
|
Krskova K, Balazova L, Dobrocsyova V, Olszanecki R, Suski M, Chai SY, Zorad Š. Insulin-Regulated Aminopeptidase Inhibition Ameliorates Metabolism in Obese Zucker Rats. Front Mol Biosci 2020; 7:586225. [PMID: 33344504 PMCID: PMC7746680 DOI: 10.3389/fmolb.2020.586225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of our study was to determine the influence of inhibition of insulin-regulated aminopeptidase/oxytocinase (IRAP) on glucose tolerance and metabolism of skeletal muscle and visceral adipose tissue in obese Zucker rats. Obese Zucker rats administered with IRAP inhibitor-HFI-419 at a dose of 29 μg/100 g BW/day by osmotic minipumps implanted subcutaneously for 2 weeks. Two-hour intraperitoneal glucose tolerance test (ipGTT) was performed in fasting rats. Plasma oxytocin levels were measured by enzyme immunoassay after plasma extraction. In the musculus quadriceps and epididymal adipose tissue, the expression of factors affecting tissue oxidative status and metabolism was determined by real-time qPCR and/or Western blot analysys. The plasma and tissue enzymatic activities were determined by colorimetric or fluorometric method. Circulated oxytocin levels in obese animals strongly tended to increase after HFI-419 administration. This was accompanied by significantly improved glucose utilization during ipGTT and decreased area under the curve (AUC) for glucose. In skeletal muscle IRAP inhibitor treatment up-regulated enzymes of antioxidant defense system - superoxide dismutase 1 and 2 and improved insulin signal transduction pathway. HFI-419 increased skeletal muscle aminopeptidase A expression and activity and normalized its plasma levels in obese animals. In epididymal adipose tissue, gene expression of markers of inflammation and adipocyte hypertrophy was down-regulated in obese rats after HFI-419 treatment. Our results demonstrate that IRAP inhibition improves whole-body glucose tolerance in insulin-resistant Zucker fatty rats and that this metabolic effect of HFI-419 involves ameliorated redox balance in skeletal muscle.
Collapse
Affiliation(s)
- Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Department of Endocrine Regulations and Psychofarmacology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Department of Endocrine Regulations and Psychofarmacology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktoria Dobrocsyova
- Institute of Experimental Endocrinology, Biomedical Research Center, Department of Endocrine Regulations and Psychofarmacology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rafal Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Siew Yeen Chai
- Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Štefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Department of Endocrine Regulations and Psychofarmacology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
AVE0991, a Nonpeptide Angiotensin 1-7 Receptor Agonist, Improves Glucose Metabolism in the Skeletal Muscle of Obese Zucker Rats: Possible Involvement of Prooxidant/Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6372935. [PMID: 32089774 PMCID: PMC7008284 DOI: 10.1155/2020/6372935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Angiotensin 1-7 (Ang 1-7) enhances insulin signaling and glucose transport activity in the skeletal muscle. The aim of our study was to evaluate the effect of AVE0991, a nonpeptide Mas receptor agonist, on the metabolic parameters, expression of RAS components and markers of oxidative stress, and insulin signaling in the skeletal morbidly obese rats. 33-week-old male obese Zucker rats were treated with vehicle and AVE0991 (0.5 mg/kg BW/day) via osmotic minipumps for two weeks. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps. The enzymatic activities were detected flourometrically (aminopeptidase A) or by colorimetric assay kit (protein tyrosine phosphatase 1B). Administration of AVE0991 enhanced insulin signaling cascade in the skeletal muscle, reflected by improved whole-body glucose tolerance. It has been shown that reactive oxygen species (ROS) have insulin-mimetic action in muscle. The expression of renin receptor, transcription factor PLZF, and prooxidant genes was upregulated by AVE0991 accompanied by elevated expression of genes coding enzymes with antioxidant action. Our results show that AVE0991 administration activates genes involved in both ROS generation and clearance establishing a new prooxidant/antioxidant balance on a higher level, which might contribute to the improved insulin signaling pathway and glucose tolerance of obese Zucker rats.
Collapse
|
7
|
Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr 2020; 12:14. [PMID: 32082422 PMCID: PMC7014712 DOI: 10.1186/s13098-020-0523-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
As age increases, the risk of developing type 2 diabetes increases, which is associated with senile skeletal muscle dysfunction. During skeletal muscle aging, mitochondrial dysfunction, intramyocellular lipid accumulation, increased inflammation, oxidative stress, modified activity of insulin sensitivity regulatory enzymes, endoplasmic reticulum stress, decreased autophagy, sarcopenia and over-activated renin-angiotensin system may occur. These changes can impair skeletal muscle insulin sensitivity and increase the risk of insulin resistance and type 2 diabetes during skeletal muscle aging. This review of the mechanism of the increased risk of insulin resistance during skeletal muscle aging will provide a more comprehensive explanation for the increased incidence of type 2 diabetes in elderly individuals, and will also provide a more comprehensive perspective for the prevention and treatment of type 2 diabetes in elderly populations.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| |
Collapse
|