1
|
Ezhova OV, Lukinykh AI, Malakhov VV. Nemertodermatida-Endosymbionts of Deep-Sea Acorn Worms (Hemichordata, Torquaratoridae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 515:11-14. [PMID: 38472683 PMCID: PMC11021256 DOI: 10.1134/s001249662360015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024]
Abstract
Worm-like endosymbionts were found in the hepatic region of the digestive tract of the deep-sea acorn worm Quatuoralisia malakhovi Ezhova et Lukinykh, 2022 (family Torquaratoridae) from the Bering Sea. The symbionts were assigned to the taxon Nemertodermatida on the basis of histological examination. Torquaratoridae are similar in feeding type to holothuroids, which have also been found to have Xenacoelomorpha endosymbionts.
Collapse
Affiliation(s)
- O V Ezhova
- Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
2
|
Abalde S, Tellgren-Roth C, Heintz J, Vinnere Pettersson O, Jondelius U. The draft genome of the microscopic Nemertoderma westbladi sheds light on the evolution of Acoelomorpha genomes. Front Genet 2023; 14:1244493. [PMID: 37829276 PMCID: PMC10565955 DOI: 10.3389/fgene.2023.1244493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Background: Xenacoelomorpha is a marine clade of microscopic worms that is an important model system for understanding the evolution of key bilaterian novelties, such as the excretory system. Nevertheless, Xenacoelomorpha genomics has been restricted to a few species that either can be cultured in the lab or are centimetres long. Thus far, no genomes are available for Nemertodermatida, one of the group's main clades and whose origin has been dated more than 400 million years ago. Methods: DNA was extracted from a single specimen and sequenced with HiFi following the PacBio Ultra-Low DNA Input protocol. After genome assembly, decontamination, and annotation, the genome quality was benchmarked using two acoel genomes and one Illumina genome as reference. The gene content of three cnidarians, three acoelomorphs, four deuterostomes, and eight protostomes was clustered in orthogroups to make inferences of gene content evolution. Finally, we focused on the genes related to the ultrafiltration excretory system to compare patterns of presence/absence and gene architecture among these clades. Results: We present the first nemertodermatid genome sequenced from a single specimen of Nemertoderma westbladi. Although genome contiguity remains challenging (N50: 60 kb), it is very complete (BUSCO: 80.2%, Metazoa; 88.6%, Eukaryota) and the quality of the annotation allows fine-detail analyses of genome evolution. Acoelomorph genomes seem to be relatively conserved in terms of the percentage of repeats, number of genes, number of exons per gene and intron size. In addition, a high fraction of genes present in both protostomes and deuterostomes are absent in Acoelomorpha. Interestingly, we show that all genes related to the excretory system are present in Xenacoelomorpha except Osr, a key element in the development of these organs and whose acquisition seems to be interconnected with the origin of the specialised excretory system. Conclusion: Overall, these analyses highlight the potential of the Ultra-Low Input DNA protocol and HiFi to generate high-quality genomes from single animals, even for relatively large genomes, making it a feasible option for sequencing challenging taxa, which will be an exciting resource for comparative genomics analyses.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Christian Tellgren-Roth
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Julia Heintz
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Martí-Solans J, Børve A, Bump P, Hejnol A, Lynagh T. Peripheral and central employment of acid-sensing ion channels during early bilaterian evolution. eLife 2023; 12:e81613. [PMID: 36821351 PMCID: PMC9949801 DOI: 10.7554/elife.81613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/08/2023] [Indexed: 02/24/2023] Open
Abstract
Nervous systems are endowed with rapid chemosensation and intercellular signaling by ligand-gated ion channels (LGICs). While a complex, bilaterally symmetrical nervous system is a major innovation of bilaterian animals, the employment of specific LGICs during early bilaterian evolution is poorly understood. We therefore questioned bilaterian animals' employment of acid-sensing ion channels (ASICs), LGICs that mediate fast excitatory responses to decreases in extracellular pH in vertebrate neurons. Our phylogenetic analysis identified an earlier emergence of ASICs from the overarching DEG/ENaC (degenerin/epithelial sodium channel) superfamily than previously thought and suggests that ASICs were a bilaterian innovation. Our broad examination of ASIC gene expression and biophysical function in each major bilaterian lineage of Xenacoelomorpha, Protostomia, and Deuterostomia suggests that the earliest bilaterian ASICs were probably expressed in the periphery, before being incorporated into the brain as it emerged independently in certain deuterostomes and xenacoelomorphs. The loss of certain peripheral cells from Ecdysozoa after they separated from other protostomes likely explains their loss of ASICs, and thus the absence of ASICs from model organisms Drosophila and Caenorhabditis elegans. Thus, our use of diverse bilaterians in the investigation of LGIC expression and function offers a unique hypothesis on the employment of LGICs in early bilaterian evolution.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of BergenBergenNorway
| | - Paul Bump
- Hopkins Marine Station, Department of Biology, Stanford UniversityPacific GroveUnited States
| | - Andreas Hejnol
- Department of Biological Sciences, University of BergenBergenNorway
| | | |
Collapse
|
4
|
Nakano H, Nakano A, Maeno A, Thorndyke MC. Induced spawning with gamete release from body ruptures during reproduction of Xenoturbella bocki. Commun Biol 2023; 6:172. [PMID: 36805023 PMCID: PMC9938242 DOI: 10.1038/s42003-023-04549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Xenoturbella is a marine invertebrate with a simple body plan, with recent phylogenomic studies suggesting that it forms the phylum Xenacoelomorpha together with the acoelomorphs. The phylogenetic position of the phylum is still under debate, whether it is an early branching bilaterian or a sister group to the Ambulacraria. Phylogenetic traits often appear during development, and larva resembling the cnidarian planula has been reported for Xenoturbella. However, subsequent developmental studies on Xenoturbella have been scarce. This is mainly due to the difficulties in collecting and keeping adult animals, resulting in the lack of data on the reproduction of the animal, such as the breeding season and the spawning pattern. Here we report on the reproduction of X. bocki and confirm that its breeding season is winter. Spawning induction resulted in gametes being released from body ruptures and not the mouth. No evidence supported the animal as a simultaneous hermaphrodite.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan. .,Kristineberg Marine Research Station, University of Gothenburg, Kristineberg 566, Fiskebäckskil, 45178, Sweden.
| | - Ako Nakano
- grid.20515.330000 0001 2369 4728Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025 Japan
| | - Akiteru Maeno
- grid.288127.60000 0004 0466 9350Cell Architecture Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540 Japan
| | - Michael C. Thorndyke
- grid.8761.80000 0000 9919 9582Kristineberg Marine Research Station, University of Gothenburg, Kristineberg 566, Fiskebäckskil, 45178 Sweden
| |
Collapse
|
5
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
6
|
Juravel K, Porras L, Höhna S, Pisani D, Wörheide G. Exploring genome gene content and morphological analysis to test recalcitrant nodes in the animal phylogeny. PLoS One 2023; 18:e0282444. [PMID: 36952565 PMCID: PMC10035847 DOI: 10.1371/journal.pone.0282444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although datasets of several hundred thousand amino acids are nowadays routinely used to test phylogenetic hypotheses, key deep nodes in the metazoan tree remain unresolved: the root of animals, the root of Bilateria, and the monophyly of Deuterostomia. Instead of using the standard approach of amino acid datasets, we performed analyses of newly assembled genome gene content and morphological datasets to investigate these recalcitrant nodes in the phylogeny of animals. We explored extensively the choices for assembling the genome gene content dataset and model choices of morphological analyses. Our results are robust to these choices and provide additional insights into the early evolution of animals, they are consistent with sponges as the sister group of all the other animals, the worm-like bilaterian lineage Xenacoelomorpha as the sister group of the other Bilateria, and tentatively support monophyletic Deuterostomia.
Collapse
Affiliation(s)
- Ksenia Juravel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Luis Porras
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Höhna
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
7
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
8
|
Ultrastructure of spermatozoa and female copulatory organs in preferably asexually-reproducing acoel Convolutriloba retrogemma (Acoelomorpha). ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Martynov A, Lundin K, Picton B, Fletcher K, Malmberg K, Korshunova T. Multiple paedomorphic lineages of soft-substrate burrowing invertebrates: parallels in the origin of Xenocratena and Xenoturbella. PLoS One 2020; 15:e0227173. [PMID: 31940379 PMCID: PMC6961895 DOI: 10.1371/journal.pone.0227173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Paedomorphosis is an important evolutionary force. It has previously been suggested that a soft-substrate sediment-dwelling (infaunal) environment facilitates paedomorphic evolution in marine invertebrates. However, until recently this proposal was never rigorously tested with robust phylogeny and broad taxon selection. Here, for the first time, we present a molecular phylogeny for a majority of the 21 families of one of the largest nudibranch subgroups (Aeolidacea) and show that the externally highly simplified vermiform nudibranch family, Pseudovermidae, with clearly defined paedomorphic traits and inhabiting a soft-substrata environment, is a sister group to the complex nudibranch family, Cumanotidae. We also report the rediscovery of one of the most enigmatic nudibranchs-Xenocratena suecica-on the Swedish and Norwegian coasts 70 years after it was first found. Xenocratena was described from the same location and environment in the Swedish Gullmar fjord as one of the most enigmatic vermiform organisms, Xenoturbella bocki, which represents either an original simple bilaterian body plan or secondary simplification of a more complex organisation. Our results show that Xenocratena suecica reveals an onset of parallel paedomorphic evolution so we have proposed the new family, Xenocratenidae fam. n., to accommodate the molecular and morphological disparities we discovered. The paedomorphic origin of another aeolidacean family, Embletoniidae, is also demonstrated for the first time. Thus, by presenting three independent lineages from non-closely related aeolidacean families, Xenocratenidae fam. n., Cumanotidae and Embletoniidae, we confirm with phylogenetic data that a soft-substrata burrowing-related environment strongly favours paedomorphic evolution. We suggest criteria to distinguish ancestral and derived characters in the context of modifications of ontogenetic cycles. Applying an evolutionary model of the soft substrate-driven multiple paedomorphic origin of several families of nudibranch molluscs we propose that it is plausible to extend this model to other marine invertebrates and suggest that the ancestral organisation of the enigmatic metazoan, Xenoturbella, might correspond to the larval part of a complex ancestral bilaterian ontogenetic cycle with sedentary/semi-sedentary adult stages and planula-like larval stages.
Collapse
Affiliation(s)
| | - Kennet Lundin
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Bernard Picton
- National Museums Northern Ireland, Holywood, Northern Ireland, United Kingdom
- Queen’s University, Belfast, Northern Ireland, United Kingdom
| | - Karin Fletcher
- Milltech Marine, Port Orchard, Washington, United States of America
| | - Klas Malmberg
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Aquatilis, Gothenburg, Sweden
| | - Tatiana Korshunova
- Zoological Museum, Moscow State University, Moscow, Russia
- Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
10
|
Gavilán B, Sprecher SG, Hartenstein V, Martinez P. The digestive system of xenacoelomorphs. Cell Tissue Res 2019; 377:369-382. [PMID: 31093756 DOI: 10.1007/s00441-019-03038-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Abstract
Interest in the study of Xenacoelomorpha has recently been revived due to realization of its key phylogenetic position as the putative sister group of the remaining Bilateria. Phylogenomic studies have attracted the attention of researchers interested in the evolution of animals and the origin of novelties. However, it is clear that a proper understanding of novelties can only be gained in the context of thorough descriptions of the anatomy of the different members of this phylum. A considerable literature, based mainly on conventional histological techniques, describes different aspects of xenacoelomorphs' tissue architecture. However, the focus has been somewhat uneven; some tissues, such as the neuro-muscular system, are relatively well described in most groups, whereas others, including the digestive system, are only poorly understood. Our lack of knowledge of the xenacoelomorph digestive system is exacerbated by the assumption that, at least in Acoela, which possess a syncytial gut, the digestive system is a derived and specialized tissue with little bearing on what is observed in other bilaterian animals. Here, we try to remedy this lack of attention by revisiting the different studies of the xenacoelomorph digestive system, and we discuss the diversity present in the light of new evolutionary knowledge.
Collapse
Affiliation(s)
- B Gavilán
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - S G Sprecher
- Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700, Fribourg, Switzerland
| | - V Hartenstein
- Department of Biology, University of California, Los Angeles, CA, USA.
| | - P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Thiel D, Franz-Wachtel M, Aguilera F, Hejnol A. Xenacoelomorph Neuropeptidomes Reveal a Major Expansion of Neuropeptide Systems during Early Bilaterian Evolution. Mol Biol Evol 2018. [PMCID: PMC6188537 DOI: 10.1093/molbev/msy160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropeptides are neurosecretory signaling molecules in protostomes and deuterostomes (together Nephrozoa). Little, however, is known about the neuropeptide complement of the sister group of Nephrozoa, the Xenacoelomorpha, which together form the Bilateria. Because members of the xenacoelomorph clades Xenoturbella, Nemertodermatida, and Acoela differ extensively in their central nervous system anatomy, the reconstruction of the xenacoelomorph and bilaterian neuropeptide complements may provide insights into the relationship between nervous system evolution and peptidergic signaling. Here, we analyzed transcriptomes of seven acoels, four nemertodermatids, and two Xenoturbella species using motif searches, similarity searches, mass spectrometry and phylogenetic analyses to characterize neuropeptide precursors and neuropeptide receptors. Our comparison of these repertoires with previously reported nephrozoan and cnidarian sequences shows that the majority of annotated neuropeptide GPCRs in cnidarians are not orthologs of specific bilaterian neuropeptide receptors, which suggests that most of the bilaterian neuropeptide systems evolved after the cnidarian–bilaterian evolutionary split. This expansion of more than 20 peptidergic systems in the stem leading to the Bilateria predates the evolution of complex nephrozoan organs and nervous system architectures. From this ancient set of neuropeptides, acoels show frequent losses that correlate with their divergent central nervous system anatomy. We furthermore detected the emergence of novel neuropeptides in xenacoelomorphs and their expansion along the nemertodermatid and acoel lineages, the two clades that evolved nervous system condensations. Together, our study provides fundamental insights into the early evolution of the bilaterian peptidergic systems, which will guide future functional and comparative studies of bilaterian nervous systems.
Collapse
Affiliation(s)
- Daniel Thiel
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
13
|
Dittmann IL, Zauchner T, Nevard LM, Telford MJ, Egger B. SALMFamide2 and serotonin immunoreactivity in the nervous system of some acoels (Xenacoelomorpha). J Morphol 2018; 279:589-597. [PMID: 29388261 PMCID: PMC5947262 DOI: 10.1002/jmor.20794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 11/06/2022]
Abstract
Acoel worms are simple, often microscopic animals with direct development, a multiciliated epidermis, a statocyst, and a digestive parenchyma instead of a gut epithelium. Morphological characters of acoels have been notoriously difficult to interpret due to their relative scarcity. The nervous system is one of the most accessible and widely used comparative features in acoels, which have a so-called commissural brain without capsule and several major longitudinal neurite bundles. Here, we use the selective binding properties of a neuropeptide antibody raised in echinoderms (SALMFamide2, or S2), and a commercial antibody against serotonin (5-HT) to provide additional characters of the acoel nervous system. We have prepared whole-mount immunofluorescent stainings of three acoel species: Symsagittifera psammophila (Convolutidae), Aphanostoma pisae, and the model acoel Isodiametra pulchra (both Isodiametridae). The commissural brain of all three acoels is delimited anteriorly by the ventral anterior commissure, and posteriorly by the dorsal posterior commissure. The dorsal anterior commissure is situated between the ventral anterior commissure and the dorsal posterior commissure, while the statocyst lies between dorsal anterior and dorsal posterior commissure. S2 and serotonin do not co-localise, and they follow similar patterns to each other within an animal. In particular, S2, but not 5-HT, stains a prominent commissure posterior to the main (dorsal) posterior commissure. We have for the first time observed a closed posterior loop of the main neurite bundles in S. psammophila for both the amidergic and the serotonergic nervous system. In I. pulchra, the lateral neurite bundles also form a posterior loop in our serotonergic nervous system stainings.
Collapse
Affiliation(s)
- Isabel L. Dittmann
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
| | - Thomas Zauchner
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Lucy M. Nevard
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Maximilian J. Telford
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Bernhard Egger
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
14
|
Perea-Atienza E, Sprecher SG, Martínez P. Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. EvoDevo 2018; 9:8. [PMID: 29610658 PMCID: PMC5875013 DOI: 10.1186/s13227-018-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background The basic helix-loop-helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and is widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellid Xenoturbella bocki and the acoel Symsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis. Results Here, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoel S. roscoffensis. Based on their expression patterns, several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles. Conclusion Our results suggest that the main roles of the bHLH genes of S. roscoffensis are evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/E47 and SrOlig. Electronic supplementary material The online version of this article (10.1186/s13227-018-0097-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Perea-Atienza
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - S G Sprecher
- 3Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700 Fribourg, Switzerland
| | - P Martínez
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.,2Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H. A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 2017; 17:245. [PMID: 29249199 PMCID: PMC5733810 DOI: 10.1186/s12862-017-1080-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. RESULTS Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. CONCLUSIONS Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan.
| | - Hideyuki Miyazawa
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Keiichi Kakui
- Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Akihito Omori
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan.,Present address: Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata, 952-2135, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
16
|
Hejnol A, Pang K. Xenacoelomorpha's significance for understanding bilaterian evolution. Curr Opin Genet Dev 2016; 39:48-54. [PMID: 27322587 DOI: 10.1016/j.gde.2016.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/02/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
The Xenacoelomorpha, with its phylogenetic position as sister group of the Nephrozoa (Protostomia+Deuterostomia), plays a key-role in understanding the evolution of bilaterian cell types and organ systems. Current studies of the morphological and developmental diversity of this group allow us to trace the evolution of different organ systems within the group and to reconstruct characters of the most recent common ancestor of Xenacoelomorpha. The disparity of the clade shows that there cannot be a single xenacoelomorph 'model' species and strategic sampling is essential for understanding the evolution of major traits. With this strategy, fundamental insights into the evolution of molecular mechanisms and their role in shaping animal organ systems can be expected in the near future.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|