1
|
Segura V, Rasia LL, Candela AM, Flores DA. Postnatal Skull Development Reveals a Conservative Pattern in Living and Fossil Vizcachas Genus Lagostomus (Rodentia, Chinchillidae). J Morphol 2024; 285:e21775. [PMID: 39256990 DOI: 10.1002/jmor.21775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
The plains vizcacha, Lagostomus maximus, is the only living species in the genus, being notably larger than fossil congeneric species, such as Lagostomus incisus, from the Pliocene of Argentina and Uruguay. Here, we compare the skull growth allometric pattern and sexual dimorphism of L. maximus and L. incisus, relating shape and size changes with skull function. We also test whether the ontogenetic trajectories and allometric trends between both sexes of L. maximus follow the same pattern. A common allometric pattern between both species was the elongation of the skull, a product of the lengthening of rostrum, and chondrogenesis on the spheno-occipitalis synchondrosis and coronalis suture. We also detected a low proportion of skull suture fusion. In some variables, older male specimens did not represent a simple linear extension of female trajectory, and all dimorphic traits were related to the development of the masticatory muscles. Sexual dimorphism previously attributed to L. incisus would indicate that this phenomenon was present in the genus since the early Pliocene and suggests social behaviors such as polygyny and male-male competition. Ontogenetic changes in L. incisus were similar to L. maximus, showing a conservative condition of the genus. Only two changes were different in the ontogeny of both species, which appeared earlier in L. incisus compared to L. maximus: the development of the frontal process of the nasals in a square shape, and the straight shape of the occipital bone in lateral view. Juveniles of L. maximus were close to adult L. incisus in the morphospace, suggesting a peramorphic process. The sequence of suture and synchondroses fusion showed minor differences in temporozygomatica and frontonasalis sutures, indicating major mechanical stress in L. maximus related to size. We suggest a generalized growth path in Chinchillidae, but further analyses are necessary at an evolutionary level, including Lagidium and Chinchilla.
Collapse
Affiliation(s)
- Valentina Segura
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
| | - Luciano L Rasia
- CONICET, División Paleontología Vertebrados, Museo de La Plata, La Plata, Argentina
| | - Adriana M Candela
- CONICET, División Paleontología Vertebrados, Museo de La Plata, La Plata, Argentina
| | - David A Flores
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
- Instituto de Vertebrados, Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| |
Collapse
|
2
|
Silva-Neto FDC, Pavan SE, Astúa D. Evolution, divergence, and convergence in the mandibles of opossums (Didelphidae, Didelphimorphia). Curr Zool 2024; 70:488-504. [PMID: 39176066 PMCID: PMC11336674 DOI: 10.1093/cz/zoad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/18/2023] [Indexed: 08/24/2024] Open
Abstract
Didelphid marsupials are considered a morphologically unspecialized group with a generalist diet that includes vertebrates, invertebrates, and plant matter. While cranium and scapula variation has already been examined within Didelphidae, variation in mandible shape, usually associated with diet or phylogeny in other mammalian groups, has not yet been properly assessed in the family. We evaluated the variation in mandible shape and size of didelphids (2470 specimens belonging to 94 species) using 2D geometric morphometrics. We classified the diet of the didelphids into four broad categories to assess whether morphospace ordination relates to dietary habits. We also provided the most comprehensive phylogeny for the family (123 out of the 126 living species) using 10 nuclear and mitochondrial genes. We then mapped mandible size and shape onto that phylogeny for 93 selected taxa and ancestral size and shapes were reconstructed by parsimony. We found phylogenetically structured variation in mandible morphology between didelphid groups, and our results indicate that they have a significant phylogenetic signal. The main axis of shape variation is poorly related to size, but the second is strongly allometric, indicating that allometry is not the main factor in shaping morphological diversity on their mandibles. Our results indicate that the shape and size of the ancestral mandible of didelphids would be similar to that of the current species of the genus Marmosa.
Collapse
Affiliation(s)
- Francisco das Chagas Silva-Neto
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego, s.n. Cidade Universitária. 50670-901 Recife, PE, Brazil
| | - Silvia E Pavan
- Department of Biological Sciences, California State Polytechnic University, Humboldt, 1 Harpst Street, Arcata, CA 95521, USA
| | - Diego Astúa
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego, s.n. Cidade Universitária. 50670-901 Recife, PE, Brazil
| |
Collapse
|
3
|
Mitchell DR, Sherratt E, Weisbecker V. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biol Rev Camb Philos Soc 2024; 99:496-524. [PMID: 38029779 DOI: 10.1111/brv.13032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The mammalian cranium (skull without lower jaw) is representative of mammalian diversity and is thus of particular interest to mammalian biologists across disciplines. One widely retrieved pattern accompanying mammalian cranial diversification is referred to as 'craniofacial evolutionary allometry' (CREA). This posits that adults of larger species, in a group of closely related mammals, tend to have relatively longer faces and smaller braincases. However, no process has been officially suggested to explain this pattern, there are many apparent exceptions, and its predictions potentially conflict with well-established biomechanical principles. Understanding the mechanisms behind CREA and causes for deviations from the pattern therefore has tremendous potential to explain allometry and diversification of the mammalian cranium. Here, we propose an amended framework to characterise the CREA pattern more clearly, in that 'longer faces' can arise through several kinds of evolutionary change, including elongation of the rostrum, retraction of the jaw muscles, or a more narrow or shallow skull, which all result in a generalised gracilisation of the facial skeleton with increased size. We define a standardised workflow to test for the presence of the pattern, using allometric shape predictions derived from geometric morphometrics analysis, and apply this to 22 mammalian families including marsupials, rabbits, rodents, bats, carnivores, antelopes, and whales. Our results show that increasing facial gracility with size is common, but not necessarily as ubiquitous as previously suggested. To address the mechanistic basis for this variation, we then review cranial adaptations for harder biting. These dictate that a more gracile cranium in larger species must represent a structural sacrifice in the ability to produce or withstand harder bites, relative to size. This leads us to propose that facial gracilisation in larger species is often a product of bite force allometry and phylogenetic niche conservatism, where more closely related species tend to exhibit more similar feeding ecology and biting behaviours and, therefore, absolute (size-independent) bite force requirements. Since larger species can produce the same absolute bite forces as smaller species with less effort, we propose that relaxed bite force demands can permit facial gracility in response to bone optimisation and alternative selection pressures. Thus, mammalian facial scaling represents an adaptive by-product of the shifting importance of selective pressures occurring with increased size. A reverse pattern of facial 'shortening' can accordingly also be found, and is retrieved in several cases here, where larger species incorporate novel feeding behaviours involving greater bite forces. We discuss multiple exceptions to a bite force-mediated influence on facial proportions across mammals which lead us to argue that ecomorphological specialisation of the cranium is likely to be the primary driver of facial scaling patterns, with some developmental constraints as possible secondary factors. A potential for larger species to have a wider range of cranial functions when less constrained by bite force demands might also explain why selection for larger sizes seems to be prevalent in some mammalian clades. The interplay between adaptation and constraint across size ranges thus presents an interesting consideration for a mechanistically grounded investigation of mammalian cranial allometry.
Collapse
Affiliation(s)
- D Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
4
|
Abstract
Compared to placentals, marsupial mammals have previously been considered primitive in terms of their reproductive biology. A new study suggests that, rather, marsupials represent a derived state of mammalian development, and the ancestral therian mammal developed like placentals do today.
Collapse
Affiliation(s)
- Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2601, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
5
|
Wilson LAB, López-Aguirre C, Archer M, Hand SJ, Flores D, Abdala F, Giannini NP. Patterns of ontogenetic evolution across extant marsupials reflect different allometric pathways to ecomorphological diversity. Nat Commun 2023; 14:2689. [PMID: 37164950 PMCID: PMC10172307 DOI: 10.1038/s41467-023-38365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
The relatively high level of morphological diversity in Australasian marsupials compared to that observed among American marsupials remains poorly understood. We undertake a comprehensive macroevolutionary analysis of ontogenetic allometry of American and Australasian marsupials to examine whether the contrasting levels of morphological diversity in these groups are reflected in their patterns of allometric evolution. We collate ontogenetic series for 62 species and 18 families of marsupials (n = 2091 specimens), spanning across extant marsupial diversity. Our results demonstrate significant lability of ontogenetic allometric trajectories among American and Australasian marsupials, yet a phylogenetically structured pattern of allometric evolution is preserved. Here we show that species diverging more than 65 million years ago converge in their patterns of ontogenetic allometry under animalivorous and herbivorous diets, and that Australasian marsupials do not show significantly greater variation in patterns of ontogenetic allometry than their American counterparts, despite displaying greater magnitudes of extant ecomorphological diversity.
Collapse
Affiliation(s)
- Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT 2600, Australia.
- Earth & Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Camilo López-Aguirre
- Department of Anthropology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Michael Archer
- Earth & Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Suzanne J Hand
- Earth & Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Flores
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo). Instituto de Vertebrados, Fundación Miguel Lillo. Miguel Lillo 251, CP 4000, Tucumán, Argentina
| | - Fernando Abdala
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo), Miguel Lillo 251, CP4000, Tucumán, Argentina
| | - Norberto P Giannini
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo), Miguel Lillo 251, CP4000, Tucumán, Argentina
- Cátedra de Biogeografía, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
6
|
Segura V, Flores D, Deferrari G. Comparison of skull growth in two ecosystem modifiers: Beavers Castor canadensis (Rodentia: Castoridae) and muskrats Ondatra zibethicus (Rodentia: Cricetidae). ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
The Cranial Morphospace of Extant Marsupials. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Segura V, Flores D, Jayat P, Martin G. Evolutionary patterns of cranial ontogeny in Sigmodontines (Rodentia, Cricetidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo San Miguel de Tucumán Argentina
| | - David Flores
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo San Miguel de Tucumán Argentina
- Instituto de Vertebrados Fundación Miguel Lillo San Miguel de Tucumán Argentina
| | - Pablo Jayat
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo San Miguel de Tucumán Argentina
| | - Gabriel Martin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Centro de Investigación Esquel de Montaña y Estepa Patagónica Consejo Nacional de Investigaciones Científicas y Técnicas‐Universidad Nacional de la Patagonia San Juan Bosco Esquel Argentina
- Laboratorio de Investigaciones en Evolución y Biodiversidad Facultad de Ciencias Naturales y Ciencias de la Salud Universidad Nacional de la Patagonia San Juan Bosco Esquel Argentina
| |
Collapse
|
9
|
|
10
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
11
|
Duport-Bru AS, Ponssa ML, Vera Candioti F. Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae). Evol Dev 2019; 21:265-277. [PMID: 31356726 DOI: 10.1111/ede.12303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.
Collapse
Affiliation(s)
- Ana S Duport-Bru
- Unidad Ejecutora Lillo, (CONICET-Fundación Miguel Lillo), Tucumán, Argentina
| | - María L Ponssa
- Unidad Ejecutora Lillo, (CONICET-Fundación Miguel Lillo), Tucumán, Argentina
| | | |
Collapse
|