1
|
Kaneko K, Koriyama S, Tsuzuki S, Masui K, Kanasaki R, Yamamoto A, Nagao M, Muragaki Y, Kawamata T, Sakai S. Association Between Pretreatment 11C-Methionine Positron Emission Tomography Metrics, Histology, and Prognosis in 125 Newly Diagnosed Patients with Adult-Type Diffuse Glioma Based on the World Health Organization 2021Classification. World Neurosurg 2024; 186:e495-e505. [PMID: 38583563 DOI: 10.1016/j.wneu.2024.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE To clarify the relationships between 11C-methionine (MET) positron emission tomography (PET) metrics and the histology, genetics, and prognosis of adult-type diffuse glioma (ADG) based on the World Health Organization (WHO) 2021 classification. METHODS A total of 125 newly diagnosed patients with ADG were enrolled. We compared the maximum standardized uptake value (SUVmax), tumor-to-normal background ratio (TNR), metabolic tumor volume (MTV), and total lesion methionine uptake (TLMU) to the histology and genetics of the patients with ADG. We also evaluated the prognoses of the 93 surgically treated patients. RESULTS The patients with isocitrate dehydrogenase wild ADG showed significantly higher MET-PET metrics (P < 0.05 for all parameters), significantly shorter overall survival and progression-free survival (P < 0.0001 for both) than those of the patients with isocitrate dehydrogenase mutant (IDHm) ADG. In the IDHm ADG group, the SUVmax, MTV, and TLMU values were significantly higher in patients with IDHm grade (G) 4 astrocytoma than patients with IDHm G2/3 astrocytoma (P < 0.05 for all), but not than patients with G2-3 oligodendroglioma. The progression-free survival was significantly shorter in the patients with G4 astrocytoma versus the patients with G2/3 astrocytoma and G3 oligodendroglioma (P < 0.05 for both). The SUVmax and TNR values were significantly higher in recurrent patients than nonrecurrent patients (P < 0.01 for both), but no significant differences were found in MTV or TLMU values. CONCLUSIONS MET-PET metrics well reflect the histological subtype, WHO grade and prognosis of ADG based on the 2021 WHO classification, with the exception of oligodendroglial tumors. Volumetric parameters were not significantly associated with recurrence, unlike the SUVmax and TNR.
Collapse
Affiliation(s)
- Koichiro Kaneko
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rie Kanasaki
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Differentiating high-grade glioma progression from treatment-related changes with dynamic [ 18F]FDOPA PET: a multicentric study. Eur Radiol 2023; 33:2548-2560. [PMID: 36367578 DOI: 10.1007/s00330-022-09221-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Diagnostic accuracy of amino-acid PET for distinguishing progression from treatment-related changes (TRC) is currently based on single-center non-homogeneous glioma populations. Our study assesses the diagnostic value of static and dynamic [18F]FDOPA PET acquisitions to differentiate between high-grade glioma (HGG) recurrence and TRC in a large cohort sourced from two independent nuclear medicine centers. METHODS We retrospectively identified 106 patients with suspected glioma recurrences (WHO GIII, n = 38; GIV, n = 68; IDH-mutant, n = 35, IDH-wildtype, n = 71). Patients underwent dynamic [18F]FDOPA PET/CT (n = 83) or PET/MRI (n = 23), and static tumor-to-background ratios (TBRs), metabolic tumor volumes and dynamic parameters (time to peak and slope) were determined. The final diagnosis was either defined by histopathology or a clinical-radiological follow-up at 6 months. Optimal [18F]FDOPA PET parameter cut-offs were obtained by receiver operating characteristic analysis. Predictive factors and clinical parameters were assessed using univariate and multivariate Cox regression survival analyses. RESULTS Surgery or the clinical-radiological 6-month follow-up identified 71 progressions and 35 treatment-related changes. TBRmean, with a threshold of 1.8, best-differentiated glioma recurrence/progression from post-treatment changes in the whole population (sensitivity 82%, specificity 71%, p < 0.0001) whereas curve slope was only significantly different in IDH-mutant HGGs (n = 25). In survival analyses, MTV was a clinical independent predictor of progression-free and overall survival on the multivariate analysis (p ≤ 0.01). A curve slope > -0.12/h was an independent predictor for longer PFS in IDH-mutant HGGs CONCLUSION: Our multicentric study confirms the high accuracy of [18F]FDOPA PET to differentiate recurrent malignant gliomas from TRC and emphasizes the diagnostic and prognostic value of dynamic acquisitions for IDH-mutant HGGs. KEY POINTS • The diagnostic accuracy of dynamic amino-acid PET, for distinguishing progression from treatment-related changes, is currently based on single-center non-homogeneous glioma populations. • This multicentric study confirms the high accuracy of static [18F]FDOPA PET images for differentiating progression from treatment-related changes in a homogeneous population of high-grade gliomas and highlights the diagnostic and prognostic value of dynamic acquisitions for IDH-mutant high-grade gliomas. • Dynamic acquisitions should be performed in IDH-mutant glioma patients to provide valuable information for the differential diagnosis of recurrence and treatment-related changes.
Collapse
|
3
|
Nardone V, Desideri I, D’Ambrosio L, Morelli I, Visani L, Di Giorgio E, Guida C, Clemente A, Belfiore MP, Cioce F, Spadafora M, Vinciguerra C, Mansi L, Reginelli A, Cappabianca S. Nuclear medicine and radiotherapy in the clinical management of glioblastoma patients. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Introduction
The aim of the narrative review was to analyse the applications of nuclear medicine (NM) techniques such as PET/CT with different tracers in combination with radiotherapy for the clinical management of glioblastoma patients.
Materials and methods
Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used.
Results
This paper contains a narrative report and a critical discussion of NM approaches in combination with radiotherapy in glioma patients.
Conclusions
NM can provide the Radiation Oncologist several aids that can be useful in the clinical management of glioblastoma patients. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
|
4
|
van Dijken BRJ, Ankrah AO, Stormezand GN, Dierckx RAJO, Jan van Laar P, van der Hoorn A. Prognostic value of 11C-methionine volume-based PET parameters in IDH wild type glioblastoma. PLoS One 2022; 17:e0264387. [PMID: 35213602 PMCID: PMC8880430 DOI: 10.1371/journal.pone.0264387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose 11C-Methionine (11C-MET) PET prognostication of isocitrate dehydrogenase (IDH) wild type glioblastomas is inadequate as conventional parameters such as standardized uptake value (SUV) do not adequately reflect tumor heterogeneity. We retrospectively evaluated whether volume-based parameters such as metabolic tumor volume (MTV) and total lesion methionine metabolism (TLMM) outperformed SUV for survival correlation in patients with IDH wild type glioblastomas. Methods Thirteen IDH wild type glioblastoma patients underwent preoperative 11C-MET PET. Both SUV-based parameters and volume-based parameters were calculated for each lesion. Kaplan-Meier curves with log-rank testing and Cox regression analysis were used for correlation between PET parameters and overall survival. Results Median overall survival for the entire cohort was 393 days. MTV (HR 1.136, p = 0.007) and TLMM (HR 1.022, p = 0.030) were inversely correlated with overall survival. SUV-based 11C-MET PET parameters did not show a correlation with survival. In a paired analysis with other clinical parameters including age and radiotherapy dose, MTV and TLMM were found to be independent factors. Conclusions MTV and TLMM, and not SUV, significantly correlate with overall survival in patients with IDH wild type glioblastomas. The incorporation of volume-based 11C-MET PET parameters may lead to a better outcome prediction for this heterogeneous patient population.
Collapse
Affiliation(s)
- Bart R. J. van Dijken
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Alfred O. Ankrah
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gilles N. Stormezand
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Jan van Laar
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Radiology, Zorggroep Twente, Almelo and Hengelo, the Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Riva G, Imparato S, Savietto G, Pecorilla M, Iannalfi A, Barcellini A, Ronchi S, Fiore MR, Paganelli C, Buizza G, Ciocca M, Baroni G, Preda L, Orlandi E. Potential role of functional imaging in predicting outcome for patients treated with carbon ion therapy: a review. Br J Radiol 2021; 94:20210524. [PMID: 34520670 DOI: 10.1259/bjr.20210524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Carbon ion radiation therapy (CIRT) is an emerging radiation technique with advantageous physical and radiobiologic properties compared to conventional radiotherapy (RT) providing better response in case of radioresistant and hypoxic tumors. Our aim is to critically review if functional imaging techniques could play a role in predicting outcome of CIRT-treated tumors, as already proven for conventional RT. METHODS 14 studies, concerning Magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), were selected after a comprehensive search on multiple electronic databases from January 2000 to March 2020. RESULTS MRI studies (n = 5) focused on diffusion-weighted MRI and, even though quantitative parameters were the same in all studies (apparent diffusion coefficient, ADC), results were not univocal, probably due to different imaging acquisition protocols and tumoral histology. For PET studies (n = 9), different tracers were used such as [18F]FDG and other uncommon tracers ([11C]MET, [18F]FLT), with a relevant heterogeneity regarding parameters used for outcome assessment. CONCLUSION No conclusion can be drawn on the predictive value of functional imaging in CIRT-treated tumors. A standardization of image acquisition, multi-institutional large trials and external validations are needed in order to establish the prognostic value of functional imaging in CIRT and to guide clinical practice. ADVANCES IN KNOWLEDGE Emerging studies focused on functional imaging's role in predicting CIRT outcome. Due to the heterogeneity of images acquisition and studies, results are conflicting and prospective large studies with imaging standardized protocol are needed.
Collapse
Affiliation(s)
- Giulia Riva
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Imparato
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giovanni Savietto
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mattia Pecorilla
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alberto Iannalfi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Mario Ciocca
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Lorenzo Preda
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Radiology, I.R.C.C.S. Policlinico San Matteo Foundation, Pavia, Italy
| | - Ester Orlandi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
6
|
Nose-to-brain delivery: exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res 2021; 10:1044-1056. [PMID: 32221847 DOI: 10.1007/s13346-020-00747-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of the primary brain tumors in humans. The intricate pathophysiology, the development of resistance by tumor cells, and the inability of the drugs to effectively cross the blood-brain and blood-tumor barriers result in poor prognosis for GBM patients, with a median survival time of only 1 to 2 years. Nose-to-brain delivery offers an attractive, noninvasive strategy to enhance drug penetration or transport novel drug/gene carriers into the brain. Although the exact mechanism of intranasal delivery remains elusive, the olfactory and trigeminal nerve pathways have been found to play a vital role in circumventing the traditional barriers of brain targeting. This review discusses the intranasal pathway as a novel domain for delivering drugs and nanocarriers encapsulating drugs/genes, as well as stem cell carriers specifically to the glioma cells. Considering the fact that most of these studies are still in preclinical stage, translating such intranasal delivery strategies from bench to bedside would be a critical step for better management and prognosis of GBM. Graphical abstract.
Collapse
|
7
|
Morimoto M, Kudomi N, Maeda Y, Kobata T, Oishi A, Matsumoto K, Monden T, Iwasaki T, Mitamura K, Norikane T, Yamamoto Y, Nishiyama Y. Effect of quantitative values on shortened acquisition duration in brain tumor 11C-methionine PET/CT. EJNMMI Phys 2021; 8:34. [PMID: 33788057 PMCID: PMC8012475 DOI: 10.1186/s40658-021-00379-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Background The amount of signal decreases when the acquisition duration is shortened. However, it is not clear how this affects the quantitative values. This study aims to clarify the effect of acquisition time shortening in brain tumor PET/CT using 11C-methionine on the quantitative values. Method This study was a retrospective analysis of 30 patients who underwent clinical 11C-methionine PET/CT examination. PET images were acquired in list mode for 10 min. PET images of acquisition duration from 1 to 10 min with 1-min step were reconstructed. We examined the effect on the quantitative values of acquisition duration. We placed a volume of interest to include the entire tumor and regions of interest in the shape of a large crescent in the contralateral hemisphere in 5 contiguous axial slices as normal tissue. Quantitative values examined were maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak, SUVmean), metabolic tumor volume (MTV), and maximum tumor to normal tissue ratio (TNRmax), with each duration compared to that with 10 min. Results SUVmax, MTV, and TNRmax showed the highest values due to the effects of statistical noise when the acquisition time was 1 min. These values were stable when the acquisition duration was > 6 min. SUVpeak and SUVmean showed mostly consistent values regardless of duration. Conclusions SUVmax, MTV, and TNRmax are affected by acquisition time. If the acquisition duration was > 6 min, the fluctuation could be suppressed within 5% in these quantitative values. However, SUVpeak was suggested to be a robust index regardless of the acquisition duration. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00379-2.
Collapse
Affiliation(s)
- Masatoshi Morimoto
- Division of Social and Environmental Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan. .,Department of Clinical Radiology, Kagawa University Hospital, Kita-gun, Kagawa, 761-0793, Japan.
| | - Nobuyuki Kudomi
- Department of Medical Physics, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, 761-0793, Japan
| | - Yukito Maeda
- Department of Clinical Radiology, Kagawa University Hospital, Kita-gun, Kagawa, 761-0793, Japan
| | - Takuya Kobata
- Department of Clinical Radiology, Kagawa University Hospital, Kita-gun, Kagawa, 761-0793, Japan
| | - Akihiro Oishi
- Department of Clinical Radiology, Kagawa University Hospital, Kita-gun, Kagawa, 761-0793, Japan
| | - Keisuke Matsumoto
- Department of Clinical Radiology, Kagawa University Hospital, Kita-gun, Kagawa, 761-0793, Japan
| | - Toshihide Monden
- Department of Clinical Radiology, Kagawa University Hospital, Kita-gun, Kagawa, 761-0793, Japan
| | - Takanobu Iwasaki
- Faculty of Health and Welfare, Tokushima Bunri University, 1314-1 Shido, Sanuki-city, Kagawa, 769-2193, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, 761-0793, Japan
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, 761-0793, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
8
|
Prognostic Significance of Metabolic Parameters by 18F-FDG PET/CT in Thymic Epithelial Tumors. Cancers (Basel) 2021; 13:cancers13040712. [PMID: 33572388 PMCID: PMC7916204 DOI: 10.3390/cancers13040712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Thymic epithelial tumors have variable prognoses that depend on histological subtype, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) currently plays an important part in oncology images. Thus, we prosecuted a retrospective review of data from 83 patients with thymic epithelial tumors who underwent pretreatment 18F-FDG PET/CT and investigated the prognostic significance along with WHO classification, Masaoka stage, and volumetric 18F-PET parameters. Masaoka stage, histologic type, treatment modality, maximum standardized uptake values (SUVmax), average standardized uptake values (SUVavg), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were significant prognostic factors for time-to-progression on univariate survival analysis. On multivariate analysis, SUVavg and Masaoka stage were important independent prognostic factors for progression-free survival in thymic epithelial tumors. Abstract Background: Imaging tumor FDG avidity could complement prognostic implication in thymic epithelial tumors. We thus investigated the prognostic value of volume-based 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT parameters in thymic epithelial tumors with other clinical prognostic factors. Methods: This is a retrospective study that included 83 patients who were diagnosed with thymic epithelial tumors and underwent pretreatment 18F-FDG PET/CT. PET parameters, including maximum and average standardized uptake values (SUVmax, SUVavg), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), were measured with a threshold of SUV 2.5. Univariate and multivariate analysis of PET parameters and clinicopathologic variables for time-to-progression was performed by using a Cox proportional hazard regression model. Results: There were 21 low-risk thymomas (25.3%), 27 high-risk thymomas (32.5%), and 35 thymic carcinomas (42.2%). Recurrence or disease progression occurred in 24 patients (28.9%). On univariate analysis, Masaoka stage (p < 0.001); histologic types (p = 0.009); treatment modality (p = 0.001); and SUVmax, SUVavg, MTV, and TLG (all p < 0.001) were significant prognostic factors. SUVavg (p < 0.001) and Masaoka stage (p = 0.001) were independent prognostic factors on multivariate analysis. Conclusion: SUVavg and Masaoka stage are independent prognostic factors in thymic epithelial tumors.
Collapse
|
9
|
Pronin IN, Khokhlova EV, Konakova TA, Maryashev SA, Pitskhelauri DI, Batalov AI, Postnov AA. [Positron emission tomography with 11C-methionine in primary brain tumor diagnosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:51-56. [PMID: 32929924 DOI: 10.17116/jnevro202012008151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the variations in 11C-methionine uptake in the intact brain tissue and in glial brain tumors of different types. MATERIAL AND METHODS Forty patients (21 men, 19 women) with gliomas, Grade I-IV, underwent 11C-methionine PET-CT and contrast-enhanced MRI. Standardized uptake value (SUV), tumor-to-normal (T/N) ratios and tumor volume were analyzed. RESULTS The high inter-subject variability was detected in the intact brain tissue (SUV in the frontal lobe (FL) varies from 0.47 to 1.73). Amino acid metabolism was more active in women than in men (FL SUV 1.32±0.22 and 1.05±0.24, respectively). T/N ratio better differentiates gliomas by the degree of anaplasia compared to SUV. Gliomas of Grade III (T/N=2.64±0.98) were significantly different (p<0.05) from those of Grade IV (T/N=3.83±0.75). The lowest level of methionine uptake was detected in diffuse astrocytomas (T/N=1.52±0.57), which was lower than with anaplastic astrocytomas (T/N=2.34±0.77, p<0.05). CONCLUSIONS 11C-methionine PET-CT was informative in the high/low degree of malignancy differentiation (T/N 1.66±0.71 for Grade I-II and 3.18±1.06 for Grade III-IV, p<0.05). The method was also useful in separating astrocytomas of Grade II and III. The considerable variation of SUV in the intact brain tissue as well as the difference in uptake between selected areas of the brain were revealed.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - E V Khokhlova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - T A Konakova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - S A Maryashev
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - D I Pitskhelauri
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A I Batalov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A A Postnov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Inoue A, Ohnishi T, Kohno S, Ohue S, Nishikawa M, Suehiro S, Matsumoto S, Ozaki S, Fukushima M, Kurata M, Kitazawa R, Shigekawa S, Watanabe H, Kunieda T. Met-PET uptake index for total tumor resection: identification of 11C-methionine uptake index as a goal for total tumor resection including infiltrating tumor cells in glioblastoma. Neurosurg Rev 2020; 44:587-597. [PMID: 32060762 DOI: 10.1007/s10143-020-01258-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is largely due to glioma stem cells (GSCs) that escape from total resection of gadolinium (Gd)-enhanced tumor on MRI. The aim of this study is to identify the imaging requirements for maximum resection of GBM with infiltrating GSCs. We investigated the relationship of tumor imaging volume between MRI and 11C-methionine (Met)-PET and also the relationship between Met uptake index and tumor activity. In ten patients, tumor-to-contralateral normal brain tissue ratio (TNR) was calculated to evaluate metabolic activity of Met uptake areas which were divided into five subareas by the degrees of TNR. In each GBM, tumor tissue was obtained from subareas showing the positive Met uptake. Immunohistochemistry was performed to examine the tumor proliferative activity and existence of GSCs. In all patients, the volume of Met uptake area at TNR ≦ 1.4 was larger than that of the Gd-enhanced area. The Met uptake area at TNR 1.4 beyond the Gd-enhanced tumor was much wider in high invasiveness-type GBMs than in those of low invasiveness type, and survival was much shorter in the former than the latter types. Immunohistochemistry revealed the existence of GSCs in the area showing Met uptake at TNR 1.4 and no Gd enhancement. Areas at TNR > 1.4 included active tumor cells with relatively high Ki-67 labeling index. In addition, it was demonstrated that GSCs could exist beyond the border of Gd-enhanced tumor. Therefore, to obtain maximum resection of GBMs, including infiltrating GSCs, aggressive surgical excision that includes the Met-positive area at TNR 1.4 should be considered.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mana Fukushima
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Analytical Pathology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
11
|
Targeting MMP-14 for dual PET and fluorescence imaging of glioma in preclinical models. Eur J Nucl Med Mol Imaging 2019; 47:1412-1426. [PMID: 31773232 DOI: 10.1007/s00259-019-04607-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE There is a clinical need for agents that target glioma cells for non-invasive and intraoperative imaging to guide therapeutic intervention and improve the prognosis of glioma. Matrix metalloproteinase (MMP)-14 is overexpressed in glioma with negligible expression in normal brain, presenting MMP-14 as an attractive biomarker for imaging glioma. In this study, we designed a peptide probe containing a near-infrared fluorescence (NIRF) dye/quencher pair, a positron emission tomography (PET) radionuclide, and a moiety with high affinity to MMP-14. This novel substrate-binding peptide allows dual modality imaging of glioma only after cleavage by MMP-14 to activate the quenched NIRF signal, enhancing probe specificity and imaging contrast. METHODS MMP-14 expression and activity in human glioma tissues and cells were measured in vitro by immunofluorescence and gel zymography. Cleavage of the novel substrate and substrate-binding peptides by glioma cells in vitro and glioma xenograft tumors in vivo was determined by NIRF imaging. Biodistribution of the radiolabeled MMP-14-binding peptide or substrate-binding peptide was determined in mice bearing orthotopic patient-derived xenograft (PDX) glioma tumors by PET imaging. RESULTS Glioma cells with MMP-14 activity showed activation and retention of NIRF signal from the cleaved peptides. Resected mouse brains with PDX glioma tumors showed tumor-to-background NIRF ratios of 7.6-11.1 at 4 h after i.v. injection of the peptides. PET/CT images showed localization of activity in orthotopic PDX tumors after i.v. injection of 68Ga-binding peptide or 64Cu-substrate-binding peptide; uptake of the radiolabeled peptides in tumors was significantly reduced (p < 0.05) by blocking with the non-labeled-binding peptide. PET and NIRF signals correlated linearly in the orthotopic PDX tumors. Immunohistochemistry showed co-localization of MMP-14 expression and NIRF signal in the resected tumors. CONCLUSIONS The novel MMP-14 substrate-binding peptide enabled PET/NIRF imaging of glioma models in mice, warranting future image-guided resection studies with the probe in preclinical glioma models.
Collapse
|
12
|
Metabolic Tumor Volume Response Assessment Using (11)C-Methionine Positron Emission Tomography Identifies Glioblastoma Tumor Subregions That Predict Progression Better Than Baseline or Anatomic Magnetic Resonance Imaging Alone. Adv Radiat Oncol 2019; 5:53-61. [PMID: 32051890 PMCID: PMC7004943 DOI: 10.1016/j.adro.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Purpose To evaluate whether response assessment of newly diagnosed glioblastoma at 3 months using 11C-methionine-positron emission tomography (MET-PET) is better associated with patient outcome compared with baseline MET-PET or anatomic magnetic resonance imaging alone. Methods and Materials Patients included were participants in a phase I/II trial of dose-escalated chemoradiation based on anatomic magnetic resonance imaging. Automated segmentation of metabolic tumor volume (MTV) was performed at a threshold of 1.5 times mean cerebellar uptake. Progression-free (PFS) and overall survival were estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariate analysis for PFS and overall survival was performed using Cox proportional hazards, and spatial overlap between imaging and recurrence volumes were analyzed. Results Among 37 patients, 15 had gross total resection, of whom 10 (67%) had residual MTV, 16 subtotal resection, and 6 biopsy alone. Median radiation therapy dose was 75 Gy (range, 66-81). Median baseline T1 Gd-enhanced tumor volume (GTV-Gd) was 38.0 cm3 (range, 8.0-81.5). Median pre-CRT MTV was 4.9 cm3 (range, 0-43.8). Among 25 patients with 3-month MET-PET, MTV was only 2.4 cm3 (range, 0.004-18.0) in patients with uptake. Patients with MTV = 0 cm3 at 3 months had superior PFS (18.2 vs 10.1 months, P = .03). On multivariate analysis, larger 3-month MTV (hazard ratio [HR] 2.4, 95% confidence interval [CI], 1.4-4.3, P = .03), persistent MET-PET subvolume (overlap of pre-CRT and 3 month MTV; HR 2.0, 95% CI, 1.2-3.4, P = .06), and increase in MTV (HR 1.8, 95% CI, 1.1-3.1, P = .09) were the only imaging factors significant for worse PFS. GTV-Gd at recurrence encompassed 97% of the persistent MET-PET subvolume (interquartile range 72%-100%), versus 71% (interquartile range 39%-93%) of baseline MTV, 54% of baseline GTV-Gd (18%-87%), and 78% of 3-month MTV (47%-95%). Conclusions The majority of patients with apparent gross total resection of glioblastoma have measurable postoperative MTV. Total and persisting MTV 3 months post-CRT were significant predictors of PFS, and persistent MET-PET subvolume was the strongest predictor for localizing tumor recurrence.
Collapse
|
13
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
14
|
|
15
|
Zhang Q, Gao X, Wei G, Qiu C, Qu H, Zhou X. Prognostic Value of MTV, SUVmax and the T/N Ratio of PET/CT in Patients with Glioma: A Systematic Review and Meta-Analysis. J Cancer 2019; 10:1707-1716. [PMID: 31205526 PMCID: PMC6548003 DOI: 10.7150/jca.28605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: In the past decade, positron emission tomography/computed tomography (PET/CT) has become an important imaging tool for clinical assessment of tumor patients. Our meta-analysis aimed to compare the predictive value of PET/CT parameters regard to overall survival (OS) and progression-free survival (PFS) outcomes in glioma. Methods: Relevant articles were systematically searched in PMC, PubMed, EMBASE and WEB of science. Studies involving the prognostic roles of PET/CT parameters with OS and PFS in glioma patients were evaluated. The impact of metabolic tumor volume (MTV), maximal standard uptake value (SUVmax), and the ratio of uptake in tumor to normal (T/N ratio) on survival was measured by calculating combined hazard ratios (HRs) and 95% confidence intervals (CIs). Results: A total of 32 articles with 1715 patients were included. The combined HRs of higher MTV, higher SUVmax and higher T/N ratio for OS were 1.14 (95% CI: 0.98-1.32, P heterogeneity<0.001), 1.69 (95% CI: 1.18-2.41, P heterogeneity<0.001) and 1.68 (95% CI: 1.40-2.01, P heterogeneity< 0.001), respectively. Regarding PFS, the combined HRs were 1.04 (95% CI: 0.97-1.11, P heterogeneity=0.002) with higher MTV, 1.45 (95% CI: 1.11-1.90, P heterogeneity<0.001) with higher SUVmax and 2.07 (95% CI: 1.45-2.95, P heterogeneity<0.001) with higher T/N ratio. Results remained similar in the sub-group analyses. Conclusion: PET/CT parameters T/N ratio may be a significant prognostic factor in patients with glioma. Evidence of SUVmax and MTV needed more large-scale studies performed to validate. PET/CT scan could be a promising technique to provide prognostic information for these patients.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xian Gao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guohua Wei
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cheng Qiu
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Hongyi Qu
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
16
|
The Emerging Role of Amino Acid PET in Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040104. [PMID: 30487391 PMCID: PMC6315339 DOI: 10.3390/bioengineering5040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Imaging plays a critical role in the management of the highly complex and widely diverse central nervous system (CNS) malignancies in providing an accurate diagnosis, treatment planning, response assessment, prognosis, and surveillance. Contrast-enhanced magnetic resonance imaging (MRI) is the primary modality for CNS disease management due to its high contrast resolution, reasonable spatial resolution, and relatively low cost and risk. However, defining tumor response to radiation treatment and chemotherapy by contrast-enhanced MRI is often difficult due to various factors that can influence contrast agent distribution and perfusion, such as edema, necrosis, vascular alterations, and inflammation, leading to pseudoprogression and pseudoresponse assessments. Amino acid positron emission tomography (PET) is emerging as the method of resolving such equivocal lesion interpretations. Amino acid radiotracers can more specifically differentiate true tumor boundaries from equivocal lesions based on their specific and active uptake by the highly metabolic cellular component of CNS tumors. These therapy-induced metabolic changes detected by amino acid PET facilitate early treatment response assessments. Integrating amino acid PET in the management of CNS malignancies to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.
Collapse
|
17
|
Kim YI, Kim Y, Lee JY, Jang SJ. Prognostic Value of the Metabolic and Volumetric Parameters of 11C-Methionine Positron-Emission Tomography for Gliomas: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1629-1634. [PMID: 29954817 DOI: 10.3174/ajnr.a5707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several studies have demonstrated that 11C-methionine positron-emission tomography provides information on prognosis. PURPOSE We performed a systematic review and meta-analysis of the prognostic value of the metabolic and volumetric parameters of 11C-methionine-PET for gliomas. DATA SOURCES A systematic search was performed using the following combination of keywords: "methionine," "PET," "glioma," and "prognosis." STUDY SELECTION The inclusion criteria were the use of 11C-methionine-PET as an imaging tool, studies limited to gliomas, studies including metabolic parameters (tumor-to-normal ratio) and/or volumetric parameters (metabolic tumor volume), and studies reporting survival data. The electronic search first identified 181 records, and 14 studies were selected. DATA ANALYSIS Event-free survival and overall survival were the outcome measures of interest. The effect of the tumor-to-normal ratio and metabolic tumor volume on survival was determined by the effect size of the hazard ratio. Hazard ratios were extracted directly from each study when provided or determined by analyzing the Kaplan-Meier curves. DATA SYNTHESIS The combined hazard ratios of the tumor-to-normal ratio for event-free survival was 1.74 with no significance and that of the tumor-to-normal ratio for overall survival was 2.02 with significance. The combined hazard ratio of the metabolic tumor volume for event-free survival was 2.72 with significance and that of the metabolic tumor volume for overall survival was 3.50 with significance. LIMITATIONS The studies selected were all retrospective, and there were only 4 studies involving the metabolic tumor volume. CONCLUSIONS The present meta-analysis of 11C-methionine-PET suggests that the tumor-to-normal ratio for overall survival and the metabolic tumor volume for event-free survival and overall survival are significant prognostic factors for patients with gliomas.
Collapse
Affiliation(s)
- Y-I Kim
- From the Department of Nuclear Medicine (Y.-i.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Y Kim
- Veterans Health Service Medical Center (Y.K.), Seoul, Republic of Korea
| | - J Y Lee
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - S J Jang
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Tanaka H, Yamaguchi T, Hachiya K, Miwa K, Shinoda J, Hayashi M, Ogawa S, Nishibori H, Goshima S, Matsuo M. 11C-methionine positron emission tomography for target delineation of recurrent glioblastoma in re-irradiation planning. Rep Pract Oncol Radiother 2018; 23:215-219. [DOI: 10.1016/j.rpor.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 04/08/2018] [Indexed: 11/30/2022] Open
|
19
|
Choi H, Han JH, Lim SY, Lee I, Cho YS, Chun EJ, Lee WW. Imaging of Myocardial Ischemia-Reperfusion Injury Using Sodium [ 18F]Fluoride Positron Emission Tomography/Computed Tomography in Rats and Humans. Mol Imaging 2018; 16:1536012117704767. [PMID: 28654382 PMCID: PMC5470131 DOI: 10.1177/1536012117704767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Positron emission tomography (PET)/computed tomography (CT) using sodium [18F]fluoride (Na[18F]F) has been proven to be a promising hot-spot imaging modality for myocardial infarction (MI). We investigated Na[18F]F uptake in ischemia–reperfusion injury (IRI) of rats and humans. Sodium [18F]fluoride PET/CT was performed in Sprague-Dawley rats that had IRI surgery, and it readily demonstrated prominent Na[18F]F uptake in the infarct area post-IRI. Sodium [18F]fluoride uptake was matched with negative 2,3,5-triphenyl-2H-tetrazolium chloride staining results, accompanied by myocardial apoptosis and associated with positive calcium staining results. Furthermore, area at risk was negative for Na[18F]F uptake. Cyclosporine A (CysA) treatment reduced standardized uptake value of 18F over the infarct area, and a significant decrease in infarct size was also observed by the CysA treatment. In humans, Na[18F]F PET/CT readily demonstrated increased Na[18F]F uptake in the 2 patients with MI post-percutaneous coronary intervention. In conclusion, this study sheds light on the potential utility of Na[18F]F PET/CT as a hot-spot imaging modality for myocardial IRI.
Collapse
Affiliation(s)
- Hongyoon Choi
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hee Han
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Yeon Lim
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Inki Lee
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- 2 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Ju Chun
- 3 Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Won Woo Lee
- 1 Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.,4 Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
20
|
Tirosh A, Papadakis GZ, Millo C, Hammoud D, Sadowski SM, Herscovitch P, Pacak K, Marx SJ, Yang L, Nockel P, Shell J, Green P, Keutgen XM, Patel D, Nilubol N, Kebebew E. Prognostic Utility of Total 68Ga-DOTATATE-Avid Tumor Volume in Patients With Neuroendocrine Tumors. Gastroenterology 2018; 154:998-1008.e1. [PMID: 29155309 PMCID: PMC5847442 DOI: 10.1053/j.gastro.2017.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/29/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Survival times vary among patients with neuroendocrine tumors (NETs) - even among those with the same site, stage, and grade of primary tumor. This makes it difficult to select treatment for patients with unresectable NETs because some patients can survive decades without treatment. 68Gallium-DOTATATE positron emission tomography with computed tomography (68Ga-DOTATATE PET/CT) is a sensitive imaging technique for detection of NETs. We investigated the prognostic accuracy of 68Ga-DOTATATE PET/CT-based analysis of tumor volume in patients with NETs. METHODS We performed a prospective study of 184 patients with NETs (128 [69.6%] with metastases and 11 patients [6.0%] with locally advanced disease) at the National Institutes of Health Clinical Center (Bethesda, MD) from 2013 through 2017. All patients underwent 68Ga-DOTATATE PET/CT image analysis and total 68Ga-DOTATATE-Avid tumor volume (68Ga-DOTATATE TV) was determined. We also measured fasting serum chromogranin A, neuron-specific enolase, gastrin, glucagon, vasoactive intestinal peptide, pancreatic polypeptide, and 24-hour urinary 5-hydroxyindoleacetic acid levels in all patients. Disease progression was defined as a new lesion or a growth of a known lesion during the interval between baseline 68Ga-DOTATATE PET/CT scan and follow-up imaging (14.0 ± 6.1 months; range, 1-35 months). The primary outcomes were progression-free survival (PFS) and disease-specific mortality during a median follow-up time of 18 months (range, 4-35 months). RESULTS We found an inverse correlation between quartiles of 68Ga-DOTATATE TV and PFS (P = .001) and disease-specific survival (P = .002). A 68Ga-DOTATATE TV of 7.0 mL or more was associated with higher odds of disease progression (hazard ratio, 3.0; P = .04). A 68Ga-DOTATATE TV of 35.8 mL or more was associated with increased risk of disease-specific death (hazard ratio, 10.6) in multivariable analysis (P = .01), as well as in subgroup analysis of patients with pancreatic NETs. CONCLUSIONS In a prospective study, we demonstrated the prognostic utility of 68Ga-DOTATATE TV in a large cohort of patients with NETs, in terms of PFS and disease-specific mortality.
Collapse
Affiliation(s)
- Amit Tirosh
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Georgios Z Papadakis
- PET Imaging Center, National Institutes of Health Clinical Center, Bethesda, Maryland; Institute of Computer Science (ICS), Foundation for Research and Technology Hellas (FORTH), Crete, Greece
| | - Corina Millo
- PET Imaging Center, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Dima Hammoud
- PET Imaging Center, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Samira M Sadowski
- Endocrine and Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Peter Herscovitch
- PET Imaging Center, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Karel Pacak
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stephen J Marx
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Lily Yang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Pavel Nockel
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jasmine Shell
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Patience Green
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xavier M Keutgen
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Dhaval Patel
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of Surgery, The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
21
|
Poetsch N, Woehrer A, Gesperger J, Furtner J, Haug AR, Wilhelm D, Widhalm G, Karanikas G, Weber M, Rausch I, Mitterhauser M, Wadsak W, Hacker M, Preusser M, Traub-Weidinger T. Visual and semiquantitative 11C-methionine PET: an independent prognostic factor for survival of newly diagnosed and treatment-naïve gliomas. Neuro Oncol 2018; 20:411-419. [PMID: 29016947 PMCID: PMC5817953 DOI: 10.1093/neuonc/nox177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Few data exist regarding the prognostic value of L-[S-methyl-11C]methionine (MET) PET for treatment-naïve gliomas. Methods A total of 160 glioma patients (89 men, 71 women; mean age: 45, range 18-84 y) underwent a MET PET prior to any therapy. The PET scans were evaluated visually and semiquantitatively by tumor-to-background (T/N) ratio thresholds chosen by analysis of receiver operating characteristics. Additionally, isocitrate dehydrogenase 1-R132H (IDH1-R132H) immunohistochemistry was performed. Survival analysis was done using Kaplan-Meier estimates and the Cox proportional hazards model. Results Significantly shorter mean survival times (7.2 vs 8.6 y; P = 0.024) were seen in patients with amino acid avid gliomas (n = 137) compared with visually negative tumors (n = 33) in MET PET. T/N ratio thresholds of 2.1 and 3.5 were significantly associated with survival (10.3 vs 7 vs 4.3 y; P < 0.001). Mean survival differed significantly using the median T/N ratio of 2.4 as cutoff, independent of histopathology (P < 0.01; mean survival: 10.2 ± 0.8 y vs 5.5 ± 0.6 y). In the subgroup of 142 glioma patients characterized by IDH1-R132H status, METT/N ratio demonstrated a significant prognostic impact in IDH1-R132H wildtype astrocytomas and glioblastoma (P = 0.001). Additionally, multivariate testing revealed semiquantitative MET PET as an independent prognostic parameter for treatment-naïve glioma patients without (P = 0.031) and with IDH1-R132H characterization of gliomas (P = 0.024; odds ratio 1.57). Conclusion This retrospective analysis demonstrates the value of MET PET as a prognostic parameter on survival in treatment-naïve glioma patients.
Collapse
Affiliation(s)
- Nina Poetsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dorothee Wilhelm
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Applied Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, Kiesel B, Wadsak W, Beyer T, Hacker M, Traub-Weidinger T. Glioma Survival Prediction with Combined Analysis of In Vivo 11C-MET PET Features, Ex Vivo Features, and Patient Features by Supervised Machine Learning. J Nucl Med 2017; 59:892-899. [DOI: 10.2967/jnumed.117.202267] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
|
23
|
Jung TY, Kim IY, Lim SH, Park KS, Kim DY, Jung S, Moon KS, Jang WY, Kang SR, Cho SG, Min JJ, Bom HS, Kwon SY. Optimization of diagnostic performance for differentiation of recurrence from radiation necrosis in patients with metastatic brain tumors using tumor volume-corrected 11C-methionine uptake. EJNMMI Res 2017; 7:45. [PMID: 28536967 PMCID: PMC5442037 DOI: 10.1186/s13550-017-0293-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 02/04/2023] Open
Abstract
Background Tumor to normal tissue ratio (T/N ratio) on 11C-methionine (11C-MET) positron emission tomography/computed tomography (PET/CT) is affected by variable factors. We investigated whether T/N ratio cutoff values corrected according to metabolic tumor volume (MTV) could improve the diagnostic performance of 11C-MET PET/CT for diagnosis of recurrence in patients with metastatic brain tumor. Forty-eight patients with metastatic brain tumors underwent 11C-MET PET/CT for differential diagnosis between recurrence and radiation necrosis after gamma knife radiosurgery (GKR). Both T/N ratio and MTV were estimated in each lesion on 11C-MET PET/CT. The lesions were classified into three groups based on MTV criteria (≤ 0.5 cm3; > 0.5, ≤ 4.0 cm3; and > 4.0 cm3). The optimal cutoff values of the T/N ratio from receiver operating characteristic (ROC) curve were determined in each group (MTV-corrected) as well as total lesions (non-corrected). Finally, diagnostic performance of 11C-MET PET/CT was compared with the MTV-corrected cutoff values. Results Among 77 lesions, 51 were diagnosed with recurrence. The mean T/N ratio was 2.25 (± 1.12) for recurrent lesions and 1.44 (± 0.22) for radiation necrosis (P < 0.001). T/N ratio of 1.61 (non-corrected) provided the best sensitivity, specificity, and diagnostic accuracy (70.6, 80.8, and 74.0%, respectively). Using the MTV criteria, optimal cutoff values of the T/N ratios in each group were 1.23 (MTV ≤ 0.5 cm3), 1.54 (0.5 cm3 < MTV ≤ 4.0 cm3), and 1.85 (MTV > 4.0 cm3). In small-sized lesions (MTV ≤ 0.5 cm3), MTV-corrected cutoff values (1.23) could maintain favorable diagnostic performance with sensitivity, specificity, and diagnostic accuracy (70.0, 80.0, and 73.3%, respectively), compared to non-corrected cutoff values. Conclusions MTV-corrected cutoff values of T/N ratio could maintain the diagnostic performance of 11C-MET PET/CT in small sized, metastatic brain tumors. We expect our results to contribute to reproducible and standardized interpretation of 11C-MET PET/CT.
Collapse
Affiliation(s)
- Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Ki Seong Park
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Woo-Youl Jang
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
| |
Collapse
|
24
|
Bosnyák E, Michelhaugh SK, Klinger NV, Kamson DO, Barger GR, Mittal S, Juhász C. Prognostic Molecular and Imaging Biomarkers in Primary Glioblastoma. Clin Nucl Med 2017; 42:341-347. [PMID: 28195901 DOI: 10.1097/rlu.0000000000001577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Several molecular glioma markers (including isocitrate dehydrogenase 1 [IDH1] mutation, amplification of the epidermal growth factor receptor [EGFR], and methylation of the O6-methylguanine-DNA methyltransferase [MGMT] promoter) have been associated with glioblastoma survival. In this study, we examined the association between tumoral amino acid uptake, molecular markers, and overall survival in patients with IDH1 wild-type (primary) glioblastoma. PATIENTS AND METHODS Twenty-one patients with newly diagnosed IDH1 wild-type glioblastomas underwent presurgical MRI and PET scanning with alpha[C-11]-L-methyl-tryptophan (AMT). MRI characteristics (T2- and T1-contrast volume), tumoral tryptophan uptake, PET-based metabolic tumor volume, and kinetic variables were correlated with prognostic molecular markers (EGFR and MGMT) and overall survival. RESULTS EGFR amplification was associated with lower T1-contrast volume (P = 0.04) as well as lower T1-contrast/T2 volume (P = 0.04) and T1-contrast/PET volume ratios (P = 0.02). Tumors with MGMT promoter methylation showed lower metabolic volume (P = 0.045) and lower tumor/cortex AMT unidirectional uptake ratios than those with unmethylated MGMT promoter (P = 0.009). While neither EGFR amplification nor MGMT promoter methylation was significantly associated with survival, high AMT tumor/cortex uptake ratios on PET were strongly prognostic for longer survival (hazards ratio, 30; P = 0.002). Estimated mean overall survival was 26 months in patients with high versus 8 months in those with low tumoral AMT uptake ratios. CONCLUSIONS The results demonstrate specific MRI and amino acid PET imaging characteristics associated with EGFR amplification and MGMT promoter methylation in patients with primary glioblastoma. High tryptophan uptake on PET may identify a subgroup with prolonged survival.
Collapse
Affiliation(s)
- Edit Bosnyák
- From the Department of *Pediatrics, Wayne State University, Detroit; †PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit; Departments of ‡Neurosurgery, and §Neurology, Wayne State University, Detroit; ∥Karmanos Cancer Institute, Detroit; and ¶Deparment of Oncology, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kim J, Lee HH, Kang Y, Kim TK, Lee SW, So Y, Lee WW. Maximum standardised uptake value of quantitative bone SPECT/CT in patients with medial compartment osteoarthritis of the knee. Clin Radiol 2017; 72:580-589. [PMID: 28400059 DOI: 10.1016/j.crad.2017.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 11/16/2022]
Abstract
AIM To evaluate the correlation between the maximum standardised uptake value (SUVmax) from bone single-photon-emission computed tomography/computed tomography (SPECT/CT) and other imaging parameters for medial compartment osteoarthritis (OA) of the knee. MATERIALS AND METHODS Patients (n=26; male:female=2:24; age, 55.3±5.8 years) underwent quantitative knee SPECT/CT using technetium-99m (Tc-99m) hydroxymethylene diphosphonate (HDP) before surgical operation for medial OA of the knee. SUVmax was calculated using dedicated quantitative software. Visual grades of tracer uptake on bone SPECT/CT and Kellgren-Lawrence (KL) OA scores on plain radiographs were assessed using a five-point scale. Magnetic resonance imaging (MRI) scores (n=22) and patient symptom scores were also assessed. RESULTS The operated knees (n=34) had a greater SUVmax than the non-operated knees (n=18) in the medial compartment (14.1±6.1 versus 5.3±4.4, p<0.0001). In the medial compartment, the SUVmax was significantly correlated with SPECT/CT visual grades (rho=0.794, p<0.0001), KL scores (rho=0.703, p<0.0001), and MRI scores (rho=0.714-0.808, p≤0.0002); however, SUVmax and other imaging parameters were not correlated with patient symptom scores (p>0.05). CONCLUSIONS The SUVmax of quantitative bone SPECT/CT was highly correlated with traditional imaging parameters for medial compartment OA severity of the knee. Quantitative bone SPECT/CT is a promising imaging technique for the objective assessment of knee OA.
Collapse
Affiliation(s)
- J Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - H-H Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Y Kang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - T K Kim
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - S W Lee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Y So
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - W W Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT. Nucl Med Commun 2017; 38:333-339. [DOI: 10.1097/mnm.0000000000000655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study. Eur J Nucl Med Mol Imaging 2017; 44:1285-1295. [DOI: 10.1007/s00259-017-3661-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
|
28
|
Ferda J, Ferdová E, Hes O, Mraček J, Kreuzberg B, Baxa J. PET/MRI: Multiparametric imaging of brain tumors. Eur J Radiol 2017; 94:A14-A25. [PMID: 28283219 DOI: 10.1016/j.ejrad.2017.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/01/2022]
Abstract
A combination of morphological imaging of the brain with microstructural and functional imaging provides a comprehensive overview of the properties of individual tissues. While diffusion weighted imaging provides information about tissue cellularity, spectroscopic imaging allows us to evaluate the integrity of neurons and possible anaerobic glycolysis during tumor hypoxia, in addition to the presence of accelerated synthesis or degradation of cellular membranes; on the other hand, PET metabolic imaging is used to evaluate major metabolic pathways, determining the overall extent of the tumor (18F-FET, 18F-FDOPA, 18F-FCH) or the degree of differentiation (18F-FDG, 18F-FLT, 18F-FDOPA and 18F-FET). Multi-parameter analysis of tissue characteristics and determination of the phenotype of the tumor tissue is a natural advantage of PET/MRI scanning. The disadvantages are higher cost and limited availability in all centers with neuro-oncology surgery. PET/MRI scanning of brain tumors is one of the most promising indications since the earliest experiments with integrated PET/MRI imaging systems, and along with hybrid imaging of neurodegenerative diseases, represent a new direction in the development of neuroradiology on the path towards comprehensive imaging at the molecular level.
Collapse
Affiliation(s)
- Jiří Ferda
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Eva Ferdová
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Ondřej Hes
- Sikl's Institute of Pathological Anatomy, University Hospital Plzen, Alej Svobody 80;304 60 Plzeň, Czech Republic.
| | - Jan Mraček
- Clinic of the Neurosurgery, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Boris Kreuzberg
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Jan Baxa
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| |
Collapse
|
29
|
Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, Bizzi A, Navarria P, Ascolese AM, Rudà R, Fernandes B, Pessina F, Grimaldi M, Simonelli M, Rossi M, Alfieri T, Zucali PA, Scorsetti M, Bello L, Chiti A. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging 2017; 44:1155-1164. [PMID: 28110346 DOI: 10.1007/s00259-017-3618-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/03/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE We evaluated the relationship between 11C-methionine PET (11C-METH PET) findings and molecular biomarkers in patients with supratentorial glioma who underwent surgery. METHODS A consecutive series of 109 patients with pathologically proven glioma (64 men, 45 women; median age 43 years) referred to our Institution from March 2012 to January 2015 for tumour resection and who underwent preoperative 11C-METH PET were analysed. Semiquantitative evaluation of the 11C-METH PET images included SUVmax, region of interest-to-normal brain SUV ratio (SUVratio) and metabolic tumour volume (MTV). Imaging findings were correlated with disease outcome in terms of progression-free survival (PFS), and compared with other clinical biological data, including IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation. The patients were monitored for a mean period of 16.7 months (median 13 months). RESULTS In all patients, the tumour was identified on 11C-METH PET. Significant differences in SUVmax, SUVratio and MTV were observed in relation to tumour grade (p < 0.001). IDH1 mutation was found in 49 patients, 1p/19q codeletion in 58 patients and MGMT promoter methylation in 74 patients. SUVmax and SUVratio were significantly inversely correlated with the presence of IDH1 mutation (p < 0.001). Using the 2016 WHO classification, SUVmax and SUVratio were significantly higher in patients with primary glioblastoma (IDH1-negative) than in those with other diffuse gliomas (p < 0.001). Relapse or progression was documented in 48 patients (median PFS 8.7 months). Cox regression analysis showed that SUVmax and SUVratio, tumour grade, tumour type on 2016 WHO classification, IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation were significantly associated with PFS. None of these factors was found to be an independent prognostic factor in multivariate analysis. CONCLUSION 11C-METH PET parameters are significantly correlated with histological grade and IDH1 mutation status in patients with glioma. Grade, pathological classification, molecular biomarkers, SUVmax and SUVratio were prognostic factors for PFS in this cohort of patients. The trial was registered with ClinicalTrials.gov (registration: NCT02518061).
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine, Humanitas Cancer Center, Humanitas Clinical and Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Marco Riva
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | | | - Fabio Raneri
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Riccardo Soffietti
- Neuro-Oncology, University & City of Health and Science Hospital, Turin, Italy
| | | | - Alberto Bizzi
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pierina Navarria
- Radiosurgery and Radiotherapy, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Anna Maria Ascolese
- Radiosurgery and Radiotherapy, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Roberta Rudà
- Neuro-Oncology, University & City of Health and Science Hospital, Turin, Italy
| | - Bethania Fernandes
- Pathology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Federico Pessina
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Marco Grimaldi
- Medical Oncology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Matteo Simonelli
- Radiology Department, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Marco Rossi
- Università degli Studi di Milano, Milan, Italy
| | | | - Paolo Andrea Zucali
- Radiology Department, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Marta Scorsetti
- Pathology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Rozzano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Arturo Chiti
- Nuclear Medicine, Humanitas Cancer Center, Humanitas Clinical and Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
30
|
Manig F, Kuhne K, von Neubeck C, Schwarzenbolz U, Yu Z, Kessler BM, Pietzsch J, Kunz-Schughart LA. The why and how of amino acid analytics in cancer diagnostics and therapy. J Biotechnol 2017; 242:30-54. [DOI: 10.1016/j.jbiotec.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
31
|
Son JW, Lee MS, Lee JS. A depth-of-interaction PET detector using a stair-shaped reflector arrangement and a single-ended scintillation light readout. Phys Med Biol 2016; 62:465-483. [DOI: 10.1088/1361-6560/aa5076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction. Am J Cancer Res 2016; 6:1768-79. [PMID: 27570549 PMCID: PMC4997235 DOI: 10.7150/thno.15929] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 11/05/2022] Open
Abstract
Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid (11)C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with (11)C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher (11)C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (p<0.001). C57Bl/6 mice (n=27) underwent coronary artery ligation or no surgery. Serial (11)C-methionine PET was performed 3, 5 and 7d later. MI mice exhibited a perfusion defect in 32-50% of the left ventricle (LV). PET detected increased (11)C-methionine accumulation in the infarct territory at 3d (5.9±0.9%ID/g vs 4.7±0.9 in remote myocardium, and 2.6±0.5 in healthy mice; p<0.05 and <0.01 respectively), which declined by d7 post-MI (4.3±0.6 in infarct, 3.4±0.8 in remote; p=0.03 vs 3d, p=0.08 vs healthy). Increased (11)C-methionine uptake was associated with macrophage infiltration of damaged myocardium. Treatment with anti-integrin antibodies (anti-CD11a, -CD11b, -CD49d; 100µg) lowered macrophage content by 56% and (11)C-methionine uptake by 46% at 3d post-MI. A patient study at 3d after ST-elevation MI and early reperfusion confirmed elevated (11)C-methionine uptake in the hypoperfused myocardial region. Targeting of elevated amino acid metabolism in pro-inflammatory M1 macrophages enables PET imaging-derived demarcation of tissue inflammation after MI. (11)C-methionine-based molecular imaging may assist in the translation of novel image-guided, inflammation-targeted regenerative therapies.
Collapse
|
33
|
Static FET-PET and MR Imaging in Anaplastic Gliomas (WHO III). World Neurosurg 2016; 91:524-531.e1. [PMID: 26947726 DOI: 10.1016/j.wneu.2016.02.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE O-(2-[18F]-fluoroethyl)-L-tyrosine-positron emission tomography (FET-PET) imaging is an additional tool for tumor grading and surgery planning. Up to now, not much is known about FET-PET imaging in anaplastic gliomas. Our objective was to assess the FET uptake in anaplastic gliomas, compared with magnetic resonance imaging (MRI), histopathologic markers, and its prognostic value. PATIENTS AND METHODS Forty-six patients (27 males/19 females) with an anaplastic glioma (WHO III) who received MRI and FET-PET imaging before surgery were retrospectively analyzed. Tumor volume was calculated in MRI and FET-PET imaging using a tumor-to-background ratio (TBR), and maximum FET uptake (TBRmax) was calculated. Overall survival (OS) and histopathologic markers (isocitrate-dehydrogenase 1/2-mutation, oligodendrial differentiation, and Ki67 proliferation index) were assessed. Univariate and multivariate analysis was performed for OS. RESULTS In univariate analysis a significant correlation of TBRmax to OS was observed (P = 0.031). Tumor volume in FET-PET imaging (TBR > 2.0) (P = 0.028) showed a higher correlation to OS than the volume of the contrast-enhancing tumor part (P = 0.031). The highest correlation was observed for intersection of volume TBR > 1.3 and the volume of the contrast-enhancing tumor part (P = 0.005); fluid-attenuated inversion recovery volume showed no significant correlation to OS (P = 0.401) in the univariate analysis. Anaplastic glioma with oligodendrial differentiation showed significantly higher TBRmax values (P = 0.029), while no significant difference was observed for isocitrate hydrogenase 1/2-mutation (P = 0.752). CONCLUSION Static FET-PET provides significant prognostic information in anaplastic gliomas, which adds to the value of MRI, supporting the use of both modalities preoperatively to assess individual risks and estimate prognosis. Definition of the histopathologic subtype using static FET-PET remains challenging.
Collapse
|