1
|
Mahmoodpour M, Kiasari BA, Karimi M, Abroshan A, Shamshirian D, Hosseinalizadeh H, Delavari A, Mirzei H. Paper-based biosensors as point-of-care diagnostic devices for the detection of cancers: a review of innovative techniques and clinical applications. Front Oncol 2023; 13:1131435. [PMID: 37456253 PMCID: PMC10348714 DOI: 10.3389/fonc.2023.1131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
The development and rapid progression of cancer are major social problems. Medical diagnostic techniques and smooth clinical care of cancer are new necessities that must be supported by innovative diagnostic methods and technologies. Current molecular diagnostic tools based on the detection of blood protein markers are the most common tools for cancer diagnosis. Biosensors have already proven to be a cost-effective and accessible diagnostic tool that can be used where conventional laboratory methods are not readily available. Paper-based biosensors offer a new look at the world of analytical techniques by overcoming limitations through the creation of a simple device with significant advantages such as adaptability, biocompatibility, biodegradability, ease of use, large surface-to-volume ratio, and cost-effectiveness. In this review, we covered the characteristics of exosomes and their role in tumor growth and clinical diagnosis, followed by a discussion of various paper-based biosensors for exosome detection, such as dipsticks, lateral flow assays (LFA), and microfluidic paper-based devices (µPADs). We also discussed the various clinical studies on paper-based biosensors for exosome detection.
Collapse
Affiliation(s)
- Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary, The University of Tehran, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Arezou Abroshan
- Student Research Committee, Faculty of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Delavari
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Chen J, Wang M, Li S, Ye J, Li L, Wu Y, Cai D, Liu T, Zhu L, Shao Y, Wang S. Well-oriented immobilized immunoaffinity magnetic beads for detection of fumonisins in grains and feeds via pre-column automatic derivatization of high-performance liquid chromatography. Food Chem 2023; 422:136226. [PMID: 37126958 DOI: 10.1016/j.foodchem.2023.136226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
In this study, based on the high-throughput automatic sample pretreatment with immunoaffinity magnetic beads with oriented immobilized antibodies, grain and feed fumonisin (FB) content was detected using pre-column automatic derivatization of high-performance liquid chromatography (HPLC). The FB capacity of well-oriented antibody immunoaffinity magnetic beads was 1.5-1.8 times that of magnetic beads with randomly fixed antibody. This pre-column automatic derivatization method using an autosampler can reduce error from manual injection and improve detection efficiency. The spiked recoveries for three different concentrations in maize, husked rice, and pig feed under optimized conditions were 84.6-104.0% (RSD < 9.3%). Our novel method was also applied to the analysis of FBs in 63 maize samples collected from the main maize-production regions in China. The results showed that as latitude increased, the contamination level of FBs tended to decrease. High temperature and high humidity are also more favorable for FB growth.
Collapse
Affiliation(s)
- Jinnan Chen
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Meng Wang
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Sen Li
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Jin Ye
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China.
| | - Li Li
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Yu Wu
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Di Cai
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Tongtong Liu
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Lin Zhu
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| | - Yi Shao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, PR China
| | - Songxue Wang
- Institute of Grain and Oil Quality Safety, Academy of National Food and Strategic Reserves Administration, Beijing 102629, PR China
| |
Collapse
|
3
|
Control of Tomato Wilt Disease Fungus Fusarium oxysporum f.sp. Lycopersicon by Single or Combine Interaction of Mycorrhiza, Trichoderma harzianum, and Effective Microorganisms (Microbial Blend). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tomato plant is usually infected with various pathogens such as pests, bacteria, and different mycoflora. In this investigation, Tomato plant cultivar Beeli was pathogenized with Fusarium oxysporum f.sp. Lycopersicon (FOL1) fungi. The FOL1 fungus was controlled by inoculating the pathogenized Tomato plants with each one of the biocontrol microorganisms, such as Arbuscular mycorrhiza (AM), Trichoderma harzianum (T. harzianum), and microbial blend, named as Effective Microorganisms (EM). Consequently, the effect of these biocontrol microorganisms on the amount of chlorophyll, proteins, and defense enzymes of the Tomato plant was estimated. The results showed that the AM, T. harzianum fungi, and “EM” gave similar ameliorative effects. However, there are regulated increasing content of chlorophyll, proteins, and the activities of many protecting compounds such as acid invertase peroxidase. Moreover, these important plant defense mechanisms have a vital role in oxidizing phenolic compounds, which could increase antimicrobial activity. Altogether, the results demonstrate that the protein and chlorophyll are increased differently in all treatments. The protein level is the highest in FOL1 + EM treatment and the ML showed the highest level of chlorophyll.
Collapse
|
4
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
5
|
Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv Transl Res 2020; 10:878-902. [DOI: 10.1007/s13346-020-00771-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol 2020; 10:2908. [PMID: 31998250 PMCID: PMC6962185 DOI: 10.3389/fmicb.2019.02908] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to Earth's changing climate, the ongoing and foreseeable spreading of mycotoxigenic Aspergillus species has increased the possibility of mycotoxin contamination in the feed and food production chain. These harmful mycotoxins have aroused serious health and economic problems since their first appearance. The most potent Aspergillus-derived mycotoxins include aflatoxins, ochratoxins, gliotoxin, fumonisins, sterigmatocystin, and patulin. Some of them can be found in dairy products, mainly in milk and cheese, as well as in fresh and especially in dried fruits and vegetables, in nut products, typically in groundnuts, in oil seeds, in coffee beans, in different grain products, like rice, wheat, barley, rye, and frequently in maize and, furthermore, even in the liver of livestock fed by mycotoxin-contaminated forage. Though the mycotoxins present in the feed and food chain are well documented, the human physiological effects of mycotoxin exposure are not yet fully understood. It is known that mycotoxins have nephrotoxic, genotoxic, teratogenic, carcinogenic, and cytotoxic properties and, as a consequence, these toxins may cause liver carcinomas, renal dysfunctions, and also immunosuppressed states. The deleterious physiological effects of mycotoxins on humans are still a first-priority question. In food production and also in the case of acute and chronic poisoning, there are possibilities to set suitable food safety measures into operation to minimize the effects of mycotoxin contaminations. On the other hand, preventive actions are always better, due to the multivariate nature of mycotoxin exposures. In this review, the occurrence and toxicological features of major Aspergillus-derived mycotoxins are summarized and, furthermore, the possibilities of treatments in the medical practice to heal the deleterious consequences of acute and/or chronic exposures are presented.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Madar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Kesici E, Erdem A. Impedimetric detection of Fumonisin B1 and its biointeraction with fsDNA. Int J Biol Macromol 2019; 139:1117-1122. [DOI: 10.1016/j.ijbiomac.2019.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/21/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022]
|
8
|
Tran TV, Do BN, Nguyen TPT, Tran TT, Tran SC, Nguyen BV, Nguyen CV, Le HQ. Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Res 2019; 8:1042. [PMID: 31956398 PMCID: PMC6950345 DOI: 10.12688/f1000research.19643.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 07/27/2023] Open
Abstract
Fumonisin is one of the most prevalent mycotoxins in maize, causing substantial economic losses and potential health risks in human and animals. In the present study, in-house polyclonal IgY antibody against fumonisin group B (FB) was applied for the development of a competitive lateral flow immunoassay detecting these mycotoxins in maize grains with the limit of detection of 4000 µg/kg, which corresponds to the maximum residue limit adopted by The International Codex Alimentarius Commission. To this end, factors affecting the test performance including nitrocellulose membrane type, dilution factor of maize homogenates in running buffer, amount of detection conjugate, and incubation time between detection conjugate and samples were optimized. Under the optimal condition (UniSart ®CN140 nitrocellulose membrane, FB 1-BSA immobilized at 1 µg/cm, 1:10 dilution factor, 436 ng of gold nanoparticle conjugate, 30 minutes of incubation), the developed test could detect both FB 1 and FB 2 in maize with limit of detection of 4000 µg/kg, and showed no cross-reactivity to deoxynivalenol, ochratoxin A, aflatoxin B1 and zearalenone. When applied to detect FB 1 and FB 2 in naturally contaminated maize samples, results obtained from the developed assay were in good agreement with those from the high-performance liquid chromatography method. This lateral flow immunoassay is particularly suitable for screening of fumonisins in maize because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Tien Viet Tran
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Binh Nhu Do
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Thao Phuong Thi Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Tung Thanh Tran
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Son Cao Tran
- Laboratory of Food Toxicology and Allergens Testing, National Institute for Food Control, Hanoi, Vietnam
| | - Ba Van Nguyen
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | | | - Hoa Quang Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| |
Collapse
|
9
|
Tran TV, Do BN, Nguyen TPT, Tran TT, Tran SC, Nguyen BV, Nguyen CV, Le HQ. Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Res 2019; 8:1042. [PMID: 31956398 PMCID: PMC6950345 DOI: 10.12688/f1000research.19643.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Fumonisin is one of the most prevalent mycotoxins in maize, causing substantial economic losses and potential health risks in human and animals. In the present study, in-house polyclonal IgY antibody against fumonisin group B (FB) was applied for the development of a competitive lateral flow immunoassay detecting these mycotoxins in maize grains with the limit of detection of 4000 µg/kg, which corresponds to the maximum residue limit adopted by The International Codex Alimentarius Commission. To this end, factors affecting the test performance including nitrocellulose membrane type, dilution factor of maize homogenates in running buffer, amount of detection conjugate, and incubation time between detection conjugate and samples were optimized. Under the optimal condition (UniSart ®CN140 nitrocellulose membrane, FB 1-BSA immobilized at 1 µg/cm, 1:10 dilution factor, 436 ng of gold nanoparticle conjugate, 30 minutes of incubation), the developed test could detect both FB 1 and FB 2 in maize with limit of detection of 4000 µg/kg, and showed no cross-reactivity to deoxynivalenol, ochratoxin A, aflatoxin B1 and zearalenone. When applied to detect FB 1 and FB 2 in naturally contaminated maize samples, results obtained from the developed assay were in good agreement with those from the high-performance liquid chromatography method. This lateral flow immunoassay is particularly suitable for screening of fumonisins in maize because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Tien Viet Tran
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Binh Nhu Do
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Thao Phuong Thi Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Tung Thanh Tran
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Son Cao Tran
- Laboratory of Food Toxicology and Allergens Testing, National Institute for Food Control, Hanoi, Vietnam
| | - Ba Van Nguyen
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | | | - Hoa Quang Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| |
Collapse
|
10
|
Srinivas C, Nirmala Devi D, Narasimha Murthy K, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B, Abd Allah EF, Chandra Nayaka S. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity- A review. Saudi J Biol Sci 2019; 26:1315-1324. [PMID: 31762590 PMCID: PMC6864208 DOI: 10.1016/j.sjbs.2019.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023] Open
Abstract
Tomato (Lycopersicon esculentum) is one of the widely grown vegetables worldwide. Fusarium oxysporum f. sp. lycopersici (FOL) is the significant contributory pathogen of tomato vascular wilt. The initial symptoms of the disease appear in the lower leaves gradually, trail by wilting of the plants. It has been reported that FOL penetrates the tomato plant, colonizing and leaving the vascular tissue dark brown, and this discoloration extends to the apex, leading to the plants wilting, collapsing and dying. Therefore, it has been widely accepted that wilting caused by this fungus is the result of a combination of various physiological activities, including the accumulation of fungal mycelia in and around xylem, mycotoxin production, inactivation of host defense, and the production of tyloses; however, wilting symptoms are variable. Therefore, the selection of molecular markers may be a more effective means of screening tomato races. Several studies on the detection of FOL have been carried out and have suggested the potency of the technique for diagnosing FOL. This review focuses on biology and variability of FOL, understanding and presenting a holistic picture of the vascular wilt disease of tomato in relation to disease model, biology, virulence. We conclude that genomic and proteomic approachesare greater tools for identification of informative candidates involved in pathogenicity, which can be considered as one of the approaches in managing the disease.
Collapse
Affiliation(s)
- C Srinivas
- Department of Studies in Microbiology and Biotechnology, Bangalore University, Bengaluru, Karnataka, India
| | - D Nirmala Devi
- Department of Microbiology, Ramaiah College of Arts, Science and Commerce, Bengaluru, Karnataka, India
| | - K Narasimha Murthy
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| | | | - T R Lakshmeesha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| | | | - Naveen Kumar Kalagatur
- Department of Immunology and Toxicology, DRDO-BU-Centre for Life Sciences, Coimbatore, India
| | - S R Niranjana
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| | - Abeer Hashem
- Plant Production Department, College of Food and Agriculture Science, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agriculture Science, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Baby Tabassum
- Toxicology Laboratory, Department of Zoology, Govt. Raza P.G. College Rampur, 244901 U.P., India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - S Chandra Nayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| |
Collapse
|
11
|
Ponce-García N, Serna-Saldivar SO, Garcia-Lara S. Fumonisins and their analogues in contaminated corn and its processed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2183-2203. [PMID: 30028638 DOI: 10.1080/19440049.2018.1502476] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the food security problems faced worldwide is the occurrence of mycotoxins in grains and their foods. Fumonisins (FBs) are mycotoxins which are prevalent in corn (Zea mays L.) and its based foods. Their intake and exposure have been epidemiologically and inconclusively associated with oesophageal cancer and neural tube defects in humans, and other harmful health effects in animals. The toxic effects of FBs can be acute or chronic and these metabolites bioaccumulate mainly in liver and kidney tissues. Among FBs, fumonisin B1 (FB1) is the most relevant moiety although the 'hidden' forms produced after food thermal processes are becoming relevant. Corn is the grain most susceptible to Fusarium and FBs contamination and the mould growth is affected both by abiotic and biotic factors during grain maturation and storage. Mould counts are mainly affected by the grain water activity, the environmental temperature during grain maturation and insect damage. The abiotic factors affected by climatic change patterns have increased their incidence in other regions of the world. Among FBs, the hidden forms are the most difficult to detect and quantify. Single or combined physical, chemical and biological methods are emerging to significantly reduce FBs in processed foods and therefore diminish their toxicological effects.
Collapse
Affiliation(s)
- Nestor Ponce-García
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico.,b Faculty of Agricultural Sciences , Autonomous University of Mexico State, UAEM, Campus Universitario "El Cerrillo" , Toluca , Mexico
| | - Sergio O Serna-Saldivar
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico
| | - Silverio Garcia-Lara
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico
| |
Collapse
|
12
|
Zhou Y, Huang X, Zhang W, Ji Y, Chen R, Xiong Y. Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosens Bioelectron 2018; 102:9-16. [DOI: 10.1016/j.bios.2017.10.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/07/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022]
|
13
|
Venkataramana M, Selvakumar G, Chandranayaka S. Fusarium Mycotoxin: Toxicity and Detection. TOXINOLOGY 2018. [DOI: 10.1007/978-94-007-6449-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Tang X, Li P, Zhang Z, Zhang Q, Guo J, Zhang W. An ultrasensitive gray-imaging-based quantitative immunochromatographic detection method for fumonisin B1 in agricultural products. Food Control 2017; 80:333-340. [DOI: 10.1016/j.foodcont.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit Rev Food Sci Nutr 2017; 58:1715-1734. [PMID: 28071928 DOI: 10.1080/10408398.2016.1276048] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotechnology embraces various physical and chemical phenomena toward advancement of health diagnostics. Toward such advancement, detection of toxins plays an important role. Toxins produce severe health impacts on consumption with high mortality associated in acute cases. The most prominent route of infection and intoxication is through food matrices. Therefore, rapid detection of toxins at low concentrations is the need of modern diagnostics. Lateral flow immunoassays are one of the emergent and popularly used rapid detection technology developed for detecting various kinds of analytes. This review thus focuses on recent advancements in lateral flow immunoassays for detecting different toxins in agricultural food. Appropriate emphasis was given on how the labels, recognition elements, or detection strategy has laid an impact on improvement in immunochromatographic assays for toxins. The paper also discusses the gradual change in sensitivities and specificities of assays in accordance with the method of food processing used. The review concludes with the major challenges faced by this technology and provides an outlook and insight of ideas to improve it in the future.
Collapse
Affiliation(s)
- Pranav Tripathi
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Neha Upadhyay
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Seema Nara
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| |
Collapse
|
16
|
Peltomaa R, Benito-Peña E, Barderas R, Sauer U, González Andrade M, Moreno-Bondi MC. Microarray-Based Immunoassay with Synthetic Mimotopes for the Detection of Fumonisin B1. Anal Chem 2017; 89:6216-6223. [DOI: 10.1021/acs.analchem.7b01178] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - Ursula Sauer
- Center
for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Martin González Andrade
- Department
of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán D.F., México
City 04510, México
| | | |
Collapse
|
17
|
Yao J, Sun Y, Li Q, Wang F, Teng M, Yang Y, Deng R, Hu X. Colloidal gold-McAb probe-based rapid immunoassay strip for simultaneous detection of fumonisins in maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2223-2229. [PMID: 27616272 DOI: 10.1002/jsfa.8032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Fumonisins are a kind of toxic and carcinogenic mycotoxin. A rapid immunochromatographic test strip has been developed for simultaneous detection of fumonisin B1 , B2 and B3 (FB1 , FB2 and FB3 ) in maize based on colloidal gold-labelled monoclonal antibody (McAb) against FB1 probe. RESULTS The anti-FB1 McAb (2E11-H3) was produced through immunisation and cell fusion, and identified as high affinity, specificity and sensitivity. The cross-reaction ratios with fumonisin B2 and B3 were accordingly 385% and 72.4%, while none with other analogues. The colloid gold-labelled anti-FB1 McAb probe was successfully prepared and used for establishing the immunochromatographic strip. The test strip showed high sensitivity and specificity, the IC50 for FB1 was 58.08 ng mL-1 , LOD was 11.24 ng mL-1 , calculated from standard curve. Moreover, the test strip exhibited high cross-reactivity with FB2 and FB3 , and could be applied to the simultaneous detection of FBs (FB1 :FB2 :FB3 = 12:4:1) in maize sample with high accuracy and precision. The average recoveries of FBs in maize ranged from 90.42% to 95.29%, and CVs were 1.25-3.77%. The results of the test strip for FBs samples showed good correlation with high-performance liquid chromatography analysis. CONCLUSION The immunochromatographic test strip could be employed in the rapid simultaneous detection of FB1 , FB2 and FB3 in maize samples on-site. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Yao
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Yaning Sun
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Qingmei Li
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Fangyu Wang
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Man Teng
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Yanyan Yang
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Henan Academy of Agriculture Science/Key Laboratory of Animal Immunology, Ministry of Agriculture/Henan key Laboratory of Animal Immunology, Zhengzhou, 450002, China
| |
Collapse
|
18
|
High-sensitivity immunochromatographic assay for fumonisin B1 based on indirect antibody labeling. Biotechnol Lett 2017; 39:751-758. [DOI: 10.1007/s10529-017-2294-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
|
19
|
Koteswara Rao V, Girisham S, Madhusudhan Reddy S. Prevalence of toxigenic Penicillium species associated with poultry house in Telangana, India. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2016; 71:353-361. [PMID: 26771300 DOI: 10.1080/19338244.2016.1140627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The prevalence of mycotoxigenic Penicillium species in poultry houses of Telangana, India, was studied during 4 seasons between June 2009 and May 2010. Fungi belonging to 13 genera, including Penicillium, comprising 43 species were collected using petri plates. Fourteen Penicillium species demonstrated varying degrees of mycotoxigenicity. Chemical and chromatographic analysis of the different poultry feed samples revealed 8 different mycotoxins with ochratoxin A (OTA) predominating. The mean contamination rate of OTA was 38%. OTA quantities ranged between 5.78 and 6.73 µg/kg-1, 10.13 and 14.23 µg/kg-1, and 12.33 and 15.20 µg/kg-1 in starter, broiler, and layer feeds, respectively. Statistically significant positive correlation between prevalence of Penicillium species and the monsoon, autumn, and spring seasons and negative correlation between prevalence and the autumn, spring, and summer seasons were observed. These findings may serve as risk exposure indicators and contribute toward the initiation of a sustainable control program.
Collapse
Affiliation(s)
| | - Sivadevuni Girisham
- a Department of Microbiology , Kakatiya University , Warangal , Telangana , India
| | | |
Collapse
|
20
|
Aiyaz M, Divakara ST, Mudili V, Moore GG, Gupta VK, Yli-Mattila T, Nayaka SC, Niranjana SR. Molecular Diversity of Seed-borne Fusarium Species Associated with Maize in India. Curr Genomics 2016; 17:132-44. [PMID: 27226769 PMCID: PMC4864842 DOI: 10.2174/1389202917666151116213056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/18/2015] [Accepted: 06/20/2015] [Indexed: 01/07/2023] Open
Abstract
A total of 106 maize seed samples were collected from different agro-climatic regions of India. Sixty-two Fusarium isolates were recovered, 90% of which were identified as Fusarium verticillioides based on morphological and molecular characters. Use of the tef-1α gene corrected/refined the morphological species identifications of 11 isolates, and confirmed those of the remaining isolates. Genetic diversity among the Fusarium isolates involved multilocus fingerprinting profiles by Inter Simple Sequence Repeats (ISSR) UPGMA and tef-1α gene phenetic analyses; for which, we observed no significant differences among the isolates based on geographic origin or fumonisin production; most of the subdivision related to species. Genotyping was performed on the F. verticillioides isolates, using 12 primer sets from the fumonisin pathway, to elucidate the molec-ular basis of fumonisin production or non-production. One fumonisin-negative isolate, UOMMF-16, was unable to amplify nine of the 12 fumonisin cluster genes tested. We also used the CD-ELISA method to confirm fumonisin production for our 62 Fusarium isolates. Only 15 isolates were found to be fumonisin-negative. Interestingly, genotypic characterization re-vealed six isolates with various gene deletion patterns that also tested positive for the production of fumonisins via CD-ELISA. Our findings confirm the importance of molecular studies for species delimitation, and for observing genetic and phenotypic diversity, among the Fusaria.
Collapse
Affiliation(s)
- Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysore-570006, India;
| | | | - Venkataramana Mudili
- DRDO-BU-Centre for Life Sciences, Bharathiar University campus, Coimbatore, Tamil Nadu-640046, India
| | - Geromy George Moore
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, USA
| | - Vijai Kumar Gupta
- MGBG, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Tapani Yli-Mattila
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Siddaiah Chandra Nayaka
- Department of Studies in Biotechnology, University of Mysore, Mysore-570006, India; ,Address correspondence to this author at the Department of Studies in Biotechnology, University of Mysore, Mysore- 570006, Karnataka, India; Fax: +91-0821-2419880; E-mail:
| | | |
Collapse
|
21
|
Cao S, Song S, Liu L, Kong N, Kuang H, Xu C. Comparison of an Enzyme-Linked Immunosorbent Assay with an Immunochromatographic Assay for Detection of Lincomycin in Milk and Honey. Immunol Invest 2016; 44:438-50. [PMID: 26107744 DOI: 10.3109/08820139.2015.1021354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An enzyme-linked immunosorbent assay (ELISA) and an immunochromatographic assay were constructed for the detection of lincomycin (LIN) in both milk and honey samples based on the monoclonal antibody named 5F6. The half-maximum inhibition of ELISA was 0.3 ng/mL after optimizing pH and ionic strength conditions; the limit of detection was 0.07 ng/mL. The cross-reactivity with clindamycin was 0.6%. LIN recovery in spiked milk and honey samples ranged from 84.6% to 115.6% with intra-assay coefficient variations of 1.7-25.4% and inter-assay coefficient variations of 2.7-8.9%. The detection limits were estimated as 2.1 µg/L for milk and 2.1 µg/kg for honey samples. The immunochromatographic assay revealed a LIN cut-off value of 10 ng/mL in PBS, 5 ng/mL in milk, and 120 ng/g in honey, and a visual lower detection limit of 2.5 ng/mL, 1 ng/mL and 30 ng/g in PBS, milk and honey, respectively. The immunochromatographic assay is preferred for large-scale practical application for its simpler pretreatment and satisfied sensitivity compared with ELISA assay.
Collapse
Affiliation(s)
- Shanshan Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, JiangSu , People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Capcarova M, Zbynovska K, Kalafova A, Bulla J, Bielik P. Environment contamination by mycotoxins and their occurrence in food and feed: Physiological aspects and economical approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:236-244. [PMID: 26786025 DOI: 10.1080/03601234.2015.1120617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contamination of food and feed by mycotoxins as toxic metabolites of fungi is a risk not only for consumers resulting in various embarrassment regarding health status and well-being, but also for producers, companies and export market on the ground of economic losses and ruined stability of economic trade. As it is given in historical evidence, the contamination of food by mycotoxins is a topic as old as a history of mankind, finding some evidence even in the ancient books and records. Nowadays, the mycotoxins are used in modern biotechnological laboratories and are considered an agent for targeting the specific cells (e.g., defected cells to eliminate them). However, this promising procedure is only the beginning. More concern is focused on mycotoxins as abiotic hazard agents. The dealing with them, systematic monitoring, and development of techniques for their elimination from agricultural commodities are worldwide issues concerning all countries. They can be found alone or in co-occurrence with other mycotoxins. Thus, this review aims to provide widened information regarding mycotoxins contamination in environment with the consequences on health of animals and humans. The inevitability for more data that correctly determine the risk points linked to mycotoxins occurrence and their specific reactions in the environment is demonstrated. This review includes various symptoms in animals and humans that result from mycotoxin exposure. For better understanding of mycotoxin's impact on animals, the sensitivities of various animal species to various mycotoxins are listed. Strategies for elimination and preventing the risks of mycotoxins contamination as well as economical approach are discussed. To complete the topic, some data from past as historical evidences are presented.
Collapse
Affiliation(s)
- Marcela Capcarova
- a Department of Animal Physiology , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Katarina Zbynovska
- a Department of Animal Physiology , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Anna Kalafova
- a Department of Animal Physiology , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Jozef Bulla
- a Department of Animal Physiology , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| | - Peter Bielik
- b Department of Economics , Faculty of Economics and Management, Slovak University of Agriculture in Nitra , Nitra , Slovak Republic
| |
Collapse
|
23
|
Urchin-like gold nanoparticle-based immunochromatographic strip test for rapid detection of fumonisin B1 in grains. Anal Bioanal Chem 2015; 407:7341-8. [DOI: 10.1007/s00216-015-8896-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/30/2022]
|
24
|
XIE YJ, YANG Y, KONG WJ, YANG SH, YANG MH. Application of Nanoparticle Probe-based Lateral Flow Immunochromatographic Assay in Mycotoxins Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Berthiller F, Brera C, Crews C, Iha M, Krsha R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2013-2014. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights developments in the determination of mycotoxins over a period between mid-2013 and mid-2014. It continues in the format of the previous articles of this series, emphasising on analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. The importance of proper sampling and sample preparation is briefly addressed in a dedicated section, while another chapter summarises new methods used to analyse botanicals and spices. As LC-MS/MS instruments are becoming more and more widespread in the determination of multiple classes of mycotoxins, another section is focusing on such newly developed multi-mycotoxin methods. While the wealth of published methods during the 12 month time span makes it impossible to cover every single one, this exhaustive review nevertheless aims to address and briefly discuss the most important developments and trends.
Collapse
Affiliation(s)
- F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Department of Veterinary Public Health and Food Safety — GMO and Mycotoxins Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Laboratório I de Ribeiro Preto, Instituto Adolfo Lutz, CEP 14085-410, Ribeiro Preto, SP, Brazil
| | - R. Krsha
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - J. Stroka
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, Raleigh, NC 27695-7625, USA
| |
Collapse
|