1
|
Wang H. The Potential of Collagen Treatment for Comorbid Diseases. Polymers (Basel) 2023; 15:3999. [PMID: 37836047 PMCID: PMC10574914 DOI: 10.3390/polym15193999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Collagen, the most abundant protein in our bodies, plays a crucial role in maintaining the structural integrity of various tissues and organs. Beyond its involvement in skin elasticity and joint health, emerging research suggests that collagen may significantly impact the treatment of complex diseases, particularly those associated with tissue damage and inflammation. The versatile functions of collagen, including skin regeneration, improving joint health, and increasing bone strength, make it potentially useful in treating different diseases. To the best of my knowledge, the strategy of using collagen to treat comorbid diseases has not been widely studied. This paper aims to explore the potential of collagen in treating comorbid diseases, including rheumatoid arthritis, osteoarthritis, osteoporosis, psoriatic arthritis, sarcopenia, gastroesophageal reflux, periodontitis, skin aging, and diabetes mellitus. Collagen-based therapies have shown promise in managing comorbidities due to their versatile properties. The multifaceted nature of collagen positions it as a promising candidate for treating complex diseases and addressing comorbid conditions. Its roles in wound healing, musculoskeletal disorders, cardiovascular health, and gastrointestinal conditions highlight the diverse therapeutic applications of collagen in the context of comorbidity management.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
2
|
Lin Q, Guo Y, Li J, He S, Chen Y, Jin H. Antidiabetic Effect of Collagen Peptides from Harpadon nehereus Bones in Streptozotocin-Induced Diabetes Mice by Regulating Oxidative Stress and Glucose Metabolism. Mar Drugs 2023; 21:518. [PMID: 37888453 PMCID: PMC10608435 DOI: 10.3390/md21100518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Oxidative stress and abnormal glucose metabolism are the important physiological mechanisms in the occurrence and development of diabetes. Antioxidant peptides have been reported to attenuate diabetes complications by regulating levels of oxidative stress, but few studies have focused on peptides from marine bone collagen. In this study, we prepared the peptides with a molecular weight of less than 1 kD (HNCP) by enzymolysis and ultrafiltration derived from Harpadon nehereus bone collagen. Furthermore, the effects of HNCP on blood glucose, blood lipid, liver structure and function, oxidative stress, and glucose metabolism were studied using HE staining, kit detection, and Western blotting experiment in streptozocin-induced type 1 diabetes mice. After the 240 mg/kg HNCP treatment, the levels of blood glucose, triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in streptozotocin-induced diabetes mice decreased by 32.8%, 42.2%, and 43.2%, respectively, while the levels of serum insulin and hepatic glycogen increased by 142.0% and 96.4%, respectively. The antioxidant enzymes levels and liver function in the diabetic mice were markedly improved after HNCP intervention. In addition, the levels of nuclear factor E2-related factor 2 (Nrf2), glucokinase (GK), and phosphorylation of glycogen synthase kinase-3 (p-GSK3β) in the liver were markedly up-regulated after HNCP treatment, but the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase1 (PEPCK1) were down-regulated. In conclusion, HNCP could attenuate oxidative stress, reduce blood glucose, and improve glycolipid metabolism in streptozocin-induced type 1 diabetes mice.
Collapse
Affiliation(s)
- Qianxia Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Yueping Guo
- Jinhua Food and Drug Inspection and Testing Institute, Jinhua 321015, China
| | - Jie Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Shuqi He
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| |
Collapse
|
3
|
Li J, Li Y, Lin S, Zhao W, Chen Y, Jin H. Collagen peptides from
Acaudina molpadioides
prevent CCl
4
‐induced liver injury via Keap1/Nrf2‐ARE, PI3K/AKT, and MAPKs pathways. J Food Sci 2022; 87:2185-2196. [DOI: 10.1111/1750-3841.16142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Saijun Lin
- Hangzhou Institute for Food and Drug Control Hangzhou China
| | - Wei Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| |
Collapse
|
4
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
5
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
6
|
Abstract
Nutrition and dietary supplements have been used to promote a youthful appearance for millennia. Despite high public demand for these products, evidence supporting their efficacy is limited and often inconsistent. We discuss the structural and functional changes that occur in the skin during the aging process. We also review evidence supporting the use of nutritional supplements commonly used to promote a youthful appearance, including essential fatty acids, coenzyme Q, collagen peptides, curcumin, polyphenols, flavonoids, probiotics, silymarin, and vitamins A, C, D, and E. We also consider the role of advanced glycosylated end products, antiinflammatory diets, and caloric restriction in delaying premature skin aging. Although evidence supporting the use of some dietary interventions is promising, further long-term studies in humans are required to fully understand their effects on the promotion of a youthful appearance.
Collapse
Affiliation(s)
- Sonal Muzumdar
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Katalin Ferenczi
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
7
|
Anti-diabetic properties of bioactive components from fish and milk. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Watanabe R, Yamaguchi M, Watanabe K, Shimizu M, Azusa T, Sone H, Kamiyama S. Effects of Collagen Peptide Administration on Visceral Fat Content in High-Fat Diet-Induced Obese Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 67:57-62. [PMID: 33642465 DOI: 10.3177/jnsv.67.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Collagen peptides (CPs) are bioactive molecules that have beneficial effects on bone metabolism and against joint disorders. In the present study, we investigated the effect of CP supplementation on visceral fat mass and plasma lipid concentrations in high-fat diet (HFD)-induced obese mice. Male ddY mice were fed a normal diet or HFD for 3 wk, and assigned to N or NCP groups and to F or FCP groups, respectively. The NCP and FCP group mice were administered experimental diets containing 25 mg/g CPs for 3 wk further. During the experimental period, CP supplementation affected neither the food consumption nor the body weight of the mice. No significant differences in the plasma triglyceride, non-esterified fatty acid, and cholesterol concentrations were observed among all the groups. In contrast, the weight of testicular fat mass was significantly decreased in the FCP group as compared with that in the F group. The expression levels of leptin and tumor necrosis factor (TNF)-α genes in the adipose tissue correlated with the visceral fat mass, although these differences were not significant. These findings indicate that CPs may have a reducing effect on visceral fat content but are less effective in reducing body weight.
Collapse
Affiliation(s)
- Ran Watanabe
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Mana Yamaguchi
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Kyosuke Watanabe
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Muneshige Shimizu
- Department of Fisheries, Faculty of Marine Science and Technology, Tokai University
| | - Takahashi Azusa
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Hideyuki Sone
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Shin Kamiyama
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| |
Collapse
|
9
|
Xu N, Peng XL, Li HR, Liu JX, Cheng JSY, Qi XY, Ye SJ, Gong HL, Zhao XH, Yu J, Xu G, Wei DX. Marine-Derived Collagen as Biomaterials for Human Health. Front Nutr 2021; 8:702108. [PMID: 34504861 PMCID: PMC8421607 DOI: 10.3389/fnut.2021.702108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen is a kind of biocompatible protein material, which is widely used in medical tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide source, low extraction cost and good physical and chemical properties, it has attracted the attention of many researchers in recent years. However, the application of collagen derived from terrestrial organisms is limited due to the existence of diseases, religious beliefs and other problems. Therefore, exploring a wider range of sources of collagen has become one of the main topics for researchers. Marine-derived collagen (MDC) stands out because it comes from a variety of sources and avoids issues such as religion. On the one hand, this paper summarized the sources, extraction methods and characteristics of MDC, and on the other hand, it summarized the application of MDC in the above fields. And on the basis of the review, we found that MDC can not only be extracted from marine organisms, but also from the wastes of some marine organisms, such as fish scales. This makes further use of seafood resources and increases the application prospect of MDC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shao-Jie Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jiangming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Alipoor E, Hosseinzadeh-Attar MJ, Salehi S, Dahmardehei M, Yaseri M, Emami MR, Hajian M, Rezayat SM, Jazayeri S. Effect of Collagen Hydrolysate and Fish Oil on High-Sensitivity C-Reactive Protein and Glucose Homeostasis in Patients with severe Burn; a Randomized Clinical Trial. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2021; 9:e50. [PMID: 34405148 PMCID: PMC8366458 DOI: 10.22037/aaem.v9i1.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Collagen and omega-3 fatty acids (FAs) are suggested to have anti-inflammatory, anti-oxidant, and insulin-sensitizing properties. The aim of this study was to investigate the effect of collagen hydrolysate and omega-3 FAs on inflammation and insulin resistance in patients with major burns. Methods: In this double-blind randomized clinical trial, 66 patients with 20-45% burns were assigned to either of the three groups of collagen (40 gr/d), collagen (40 gr/d) plus fish oil (10 ml/d), or control. High-sensitivity C-reactive protein (hs-CRP), fasting blood glucose (FBG) and insulin concentrations, and homeostatic model assessment for insulin resistance (HOMA-IR) were assessed at baseline, as well as end of weeks two and three. Results: Based on post-hoc analyses, hs-CRP levels were significantly lower in the collagen (p=0.026) and collagen+omega-3 (p=0.044) groups compared to the control group, at week three. However, pre- to post- (week three) changes of hs-CRP were significantly higher only in the collagen+omega-3 group compared to the control group (173.2 vs. 103.7 mg/l, p=0.024). After three weeks of the intervention, insulin (11.3 and 11.9 vs. 22.8 µIU/ml) and HOMA-IR (2.9 and 2.8 vs. 7.9) values seemed to be clinically, but not statistically, lower in both intervention groups compared to the control group. Pre- to post- (week three) values of FBG decreased significantly in the collagen (p=0.002) and collagen+omega-3 (p=0.036) groups. Insulin (p=0.008) and HOMA-IR (p=0.001) decreased significantly only in the collagen+omega-3 group at week three compared to the baseline. Conclusions: Supplementation with collagen hydrolysate and omega-3 FAs can improve hs-CRP concentration and probably insulin resistance in patients with severe burns. Omega-3 FAs had additional effects on modulating inflammation. Larger clinical trials are needed to confirm the current findings especially in terms of glucose homeostasis.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Salehi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Dahmardehei
- Department of Plastic Surgery, Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hajian
- Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Nanomedicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
12
|
Anti-diabetic effects of sea cucumber (Holothuria nobilis) hydrolysates in streptozotocin and high-fat-diet induced diabetic rats via activating the PI3K/Akt pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
14
|
Bjørndal B, Aloysius TA, Lund A, Slizyte R, Bohov P, Carvajal AK, Berge RK. A chicken protein hydrolysate exerts anti-atherosclerotic effect beyond plasma cholesterol-lowering activity in Apoe -/- mice. Food Sci Nutr 2020; 8:3052-3060. [PMID: 32724569 PMCID: PMC7382182 DOI: 10.1002/fsn3.1300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022] Open
Abstract
Chicken protein hydrolysates (CPHs) generated from rest raw materials through enzymatic hydrolysis using Corolase PP or Alcalase were shown to reduce inflammation and stimulate hepatic mitochondrial fatty acid oxidation in high-fat-fed mice. This study investigates the effect of CPH diets in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Apoe-/- mice were divided into three groups of 12 animals and fed high-fat diets with casein (control), Alcalase CPH, or Corolase PP CPH. After 12 weeks, mice were sacrificed, blood samples were collected, and aorta was dissected for subsequent én face analysis. Mice fed Corolase PP CPH but not Alcalase CPH had significantly lower % atherosclerotic plaque area in the aortic arch compared to controls (p = .015 and p = .077, respectively). Plasma and liver cholesterol and triacylglycerol remained constant, but levels of the fatty acid C20:5n-3 were increased, accompanied by an elevated delta-5 desaturase index in both CPHs groups. Moreover, a significant reduction of plasma MCP-1 was detected in Corolase PP CPH compared to control. Overall, our data show that protein hydrolysates from chicken reduced atherosclerosis and attenuated systemic risk factors related to atherosclerotic disorders, not related to changes in the level of plasma cholesterol.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Anders Lund
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Pavol Bohov
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Rolf K. Berge
- Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of Heart DiseaseHaukeland University HospitalBergenNorway
| |
Collapse
|
15
|
Woo M, Noh JS. Regulatory Effects of Skate Skin-Derived Collagen Peptides with Different Molecular Weights on Lipid Metabolism in the Liver and Adipose Tissue. Biomedicines 2020; 8:biomedicines8070187. [PMID: 32630126 PMCID: PMC7400643 DOI: 10.3390/biomedicines8070187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of skate skin collagen peptide (SSCP) with different molecular weights (MWs) on the lipid metabolism in the liver and adipose tissue. Male db/db mice were orally administered with water (control group) or low SSCP (LCP group) or high SSCP (HCP group) MW for 8 weeks whereas male m/m mice were used for comparison (normal group) (n = 10 each group). Compared to the control group, the LCP and HCP groups had lower adipose tissue mass, plasma and hepatic lipid concentrations, and plasma leptin levels (p < 0.05). Protein expression levels of lipogenesis-related protein were reduced in both liver and adipose tissues of SSCP-fed groups whereas those for lipolysis were elevated (p < 0.05). In particular, the LCP had the higher effects relative to the HCP. The above results were supported by histological analysis, revealing that SSCP administration decreased the size of adipose droplets and suppressed hepatic lipid accumulation. Our results showed that SSCP has potential antiobesity properties through the improvement of lipid metabolism in the liver and adipose tissue; in particular, the lower MW of collagen peptide had the greater effects.
Collapse
Affiliation(s)
- Minji Woo
- Busan Innovation Institute of Industry, Science & Technology Planning (BISTEP), Busan 48058, Korea;
- Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan 48520, Korea
- Correspondence: ; Tel.: +82-51-629-1716; Fax: +82-51-629-1709
| |
Collapse
|
16
|
Zhu Q, Lin L, Zhao M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int J Biol Macromol 2020; 159:34-45. [PMID: 32437815 DOI: 10.1016/j.ijbiomac.2020.05.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Sulfated fucan chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber may be a good alternative to high-edible-value sea cucumber-derived polysaccharide for application in hypoglycemic functional foods. To evaluate the potential effect of low-edible-value sea cucumber-derived polysaccharide fraction on type 2 diabetes (T2DM), two sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fractions screening from 10 global commercial low-edible-value sea cucumber species were investigated to identify their anti-diabetics efficacies using a high-fat diet and streptozotocin-induced T2DM rat model. Sulfated fucan-dominated polysaccharide fraction from Thelenota ananas and fucosylated chondroitin sulfate-dominated polysaccharide fraction from Cucumaria frondosa ameliorated hyperglycemia, restored hypertriglyceridemia and hypercholesterolemia, decreased inflammatory status and oxidative stress, protected against liver injury, as well as improved insulin resistance and promoted accumulation of hepatic glycogen by activating IRS/PI3K/AKT signaling and regulating GSK-3β gene expression in T2DM rats. The current findings provide an available strategy for the commercialization of sea cucumber polysaccharide based-hypoglycemic functional food.
Collapse
Affiliation(s)
- Qiyuan Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| |
Collapse
|
17
|
Woo M, Seol BG, Kang KH, Choi YH, Cho EJ, Noh JS. Effects of collagen peptides from skate (Raja kenojei) skin on improvements of the insulin signaling pathway via attenuation of oxidative stress and inflammation. Food Funct 2020; 11:2017-2025. [DOI: 10.1039/c9fo02667c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has been well established that hepatic insulin signaling is significantly affected by the antioxidative status of the liver.
Collapse
Affiliation(s)
- Minji Woo
- Department of Food Science and Nutrition and Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
- Busan Innovation Institute of Industry
| | - Bo Gyeong Seol
- Department of Food Science and Nutrition and Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | | | - Yung Hyun Choi
- Department of Biochemistry
- Dongeui University College of Korean Medicine and Anti-Aging Research Center
- Dongeui University
- Busan
- Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition and Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition
- Tongmyong University
- Busan 48520
- Republic of Korea
| |
Collapse
|
18
|
Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar Drugs 2019; 17:E467. [PMID: 31405173 PMCID: PMC6723527 DOI: 10.3390/md17080467] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold-a three-dimensional (3D) structure fabricated from biomaterials-is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.
Collapse
Affiliation(s)
- Ye-Seon Lim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye-Jin Ok
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seon-Yeong Hwang
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
19
|
Kumar A, Elavarasan K, Hanjabam MD, Binsi P, Mohan C, Zynudheen A, Kumar K A. Marine collagen peptide as a fortificant for biscuit: Effects on biscuit attributes. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia 2019; 134:270-289. [PMID: 30840917 DOI: 10.1016/j.fitote.2019.02.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, severely affects patients' life and intensively increases risks of developing other diseases. It is estimated that 0.4 billion individuals worldwide are subjected to diabetes, especially type 2 diabetes mellitus. At present, although various synthetic drugs for diabetes such as Alogliptin and Rosiglitazone, etc. have been used to manage diabetes, some of them showed severe side effects. Given that the pathogenesis of type 2 diabetes mellitus, natural occurring drugs are beneficial alternatives for diabetes therapy with low adverse effects or toxicity. Recently, more and more plant-derived extracts or compounds were evaluated to have anti-diabetic activities. Their anti-diabetic mechanisms involve certain key targets like α-glucosidase, α-amylase, DPP-4, PPAR γ, PTP1B, and GLUT4, etc. Here, we summarize the newly found anti-diabetic (type 2 diabetes mellitus) natural compounds and extracts from 2011-2017, and give the identification of their molecular targets. This review could provide references for the research of natural agents curing type 2 diabetes mellitus (T2DM).
Collapse
|
21
|
Harnedy PA, Parthsarathy V, McLaughlin CM, O'Keeffe MB, Allsopp PJ, McSorley EM, O'Harte FPM, FitzGerald RJ. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Res Int 2018; 106:598-606. [PMID: 29579965 DOI: 10.1016/j.foodres.2018.01.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022]
Abstract
Large quantities of low-value protein rich co-products, such as salmon skin and trimmings, are generated annually. These co-products can be upgraded to high-value functional ingredients. The aim of this study was to assess the antidiabetic potential of salmon skin gelatin and trimmings-derived protein hydrolysates in vitro. The gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L exhibited significantly higher (p < 0.001) insulin and GLP-1 secretory activity from pancreatic BRIN-BD11 and enteroendocrine GLUTag cells, respectively, when tested at 2.5 mg/mL compared to hydrolysates generated with Alcalase 2.4L or Promod 144MG. The gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L showed significantly more potent (p < 0.01) DPP-IV inhibitory activity than those generated with Alcalase 2.4L or Promod 144MG. No significant difference was observed in the insulinotropic activity mediated by any of the trimmings-derived hydrolysates when tested at 2.5 mg/mL. However, the trimmings hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L exhibited significantly higher DPP-IV inhibitory (p < 0.05:Alcalase 2.4L and p < 0.01:Promod 144MG) and GLP-1 (p < 0.001, 2.5 mg/mL) secretory activity than those generated with Alcalase 2.4L or Promod 144MG. The salmon trimmings hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L when subjected to simulated gastrointestinal digestion (SGID) was shown to retain its GLP-1 secretory and DPP-IV inhibitory activities, in addition to improving its insulin secretory activity. However, the gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L was shown to lose GLP-1 secretory activity following SGID. A significant increase in membrane potential (p < 0.001) and intracellular calcium (p < 0.001) by both co-product hydrolysates generated with Alcalase 2.4L and Flavourzyme 500L suggest that both hydrolysates mediate their insulinotropic activity through the KATP channel-dependent pathway. Additionally, by stimulating a significant increase in intracellular cAMP release (p < 0.05) it is likely that the trimmings-derived hydrolysate may also mediate insulin secretion through the protein kinase A pathway. The results presented herein demonstrate that salmon co-product hydrolysates exhibit promising in vitro antidiabetic activity.
Collapse
Affiliation(s)
- Pádraigín A Harnedy
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Vadivel Parthsarathy
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Chris M McLaughlin
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Martina B O'Keeffe
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Philip J Allsopp
- Northern Ireland Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Emeir M McSorley
- Northern Ireland Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | - Finbarr P M O'Harte
- The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland.
| | | |
Collapse
|