1
|
Yu Y, Wang Y, Okonkwo CE, Chen L, Zhou C. Multimode ultrasonic-assisted decontamination of fruits and vegetables: A review. Food Chem 2024; 450:139356. [PMID: 38643647 DOI: 10.1016/j.foodchem.2024.139356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Fruits and vegetables (F&V) are a significant part of our diet consumption. Microbial and pesticide residues are the predominant safety hazards of F&V consumption. Ordinary water washing has a very limited effect on removing microorganisms and pesticide residues and requires high water usage. Ultrasound, as an environmentally friendly technology, shows excellent potential for reducing microbial contamination and pesticide residue. This paper summarizes the research on ultrasound application in F&V washing, including the removal of microbial and pesticide residues and the comprehensive effect on their physicochemical characteristics. Furthermore, multimode ultrasonic-assisted techniques like multi-frequency and sequential ultrasound, combined with novel and conventional methods, can enhance the ultrasound-based effect and be more effective and sustainable in preventing F&V from microbial contamination. Overall, this work explicitly establishes the background on the potential for ultrasound cleaning and disinfection in the food industry as a green, effective, and ultimate method of preventing foodborne illnesses.
Collapse
Affiliation(s)
- Yanhua Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Li Y, Sun R, Kong Y, Cai X, Jiang T, Cheng S, Yang H, Song L, Lü X, Wang X, Shi C. Antibacterial effect of ultrasound and β-citronellol against Listeria monocytogenes and its application in carrot preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106752. [PMID: 38211495 PMCID: PMC10788804 DOI: 10.1016/j.ultsonch.2023.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This study investigated the antibacterial effects of ultrasound (US), β-citronellol (CT), and a combination of the two treatments on Listeria monocytogenes. Results showed that US or CT alone did not show apparent antibacterial effect (0.02-0.76 log CFU/mL reduction). The combined treatment showed obviously inactivate effect of L. monocytogenes, the populations of L. monocytogenes decreased by 8.93 log CFU/mL after US (253 W/cm2, 20 kHz) + 0.8 mg/mL CT treatment. US + CT treatment also had a significant (P < 0.05) antibacterial effect on isolates of L. monocytogenes from three different serotypes. In this study, the damage of US + CT on cell morphology had been observed using field emission scanning electron microscopy, while the damage to cell membranes by US + CT was observed by confocal laser scanning microscopy and flow cytometry. Meanwhile, the uptake of N-phenyl-l-naphthylamine and the absorbance at 260 and 280 nm also indicated that the combined treatment disrupted the permeability and integrity of L. monocytogenes membranes. Reactive oxygen species and malondialdehyde assays showed that US + CT exacerbated cellular oxidative stress and lipid peroxidation. In addition, the US + CT treatment reduced L. monocytogenes by 3.14-4.24 log CFU/g on the surface of carrots. Total phenolic and carotenoid contents in carrots were elevated after US + CT treatment. During storage, compared to control, US + CT did not significantly (P > 0.05) change the surface color of carrots but significantly (P < 0.05) decreased both hardness and weight, and has an impact on the sensory. This study showed that US + CT is a promising cleaning method that will provide new ideas for the preservation of fresh agricultural produce.
Collapse
Affiliation(s)
- Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
3
|
Cardoso LT, Alexandre B, Cacciatore FA, Magedans YVDS, Fett-Neto AG, Contri RV, Malheiros PDS. Carvacrol-loaded nanoemulsions produced with a natural emulsifier for lettuce sanitization. Food Res Int 2023; 168:112748. [PMID: 37120202 DOI: 10.1016/j.foodres.2023.112748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Carvacrol is an antimicrobial agent that shows potential for eliminating microorganisms in vegetables, increasing food safety. However, intense odor and low water solubility of carvacrol are limiting factors for its application for fresh vegetables sanitization, which can be overcome by nanotechnology. Two different nanoemulsions containing carvacrol (11 mg/mL) were developed by probe sonication: carvacrol-saponin nanoemulsion (CNS) and carvacrol-polysorbate 80 nanoemulsion (CNP). Formulations presented appropriate droplet sizes (from 74.7 nm to 168.2 nm) and high carvacrol encapsulation efficiency (EE) (from 89.5 % to 91.5 %). CNS showed adequate droplet size distribution (PDI < 0.22) and high zeta potential values (around -30 mV) compared to CNP, with saponin chosen for the following experiments. Carvacrol nanoemulsions presented Bacterial Inactivation Concentration (BIC) against the Salmonella cocktail from 5.51 to 0.69 mg/mL and for the E. coli cocktail from 1.84 to 0.69 mg/mL. Among all tested nanoemulsions, CNS1 presented the lowest BIC (0.69 mg/mL) against both bacterial cocktails. Damage to bacterial cells in lettuce treated with nanoemulsion was confirmed by scanning electron microscopy. For lettuce sanitization, CNS1 showed a similar effect to unencapsulated carvacrol, with a high bacterial reduction (>3 log CFU/g) after lettuce immersion for 15 min at 2 × BIC. Using the same immersion time, the CNS1 (2 × BIC) demonstrated equal or better efficacy in reducing both tested bacterial cocktails (>3 log CFU/g) when compared to acetic acid (6.25 mg/mL), citric acid (25 mg/mL), and sodium hypochlorite solution (150 ppm). Lettuce immersed in CNS1 at both concentrations (BIC and 2 × BIC) did not change the color and texture of leaves, while the unencapsulated carvacrol at 2 × BIC darkened them and reduced their firmness. Consequently, carvacrol-saponin nanoemulsion (CNS1) proved to be a potential sanitizer for lettuce.
Collapse
Affiliation(s)
- Louise Thomé Cardoso
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Bibiana Alexandre
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Fabiola Ayres Cacciatore
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Yve Verônica da Silva Magedans
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Arthur Germano Fett-Neto
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Renata Vidor Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Patrícia da Silva Malheiros
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
4
|
Bai Y, Shi C, Zhou Y, Zhou Y, Zhang H, Chang R, Hu X, Hu J, Yang C, Peng K, Xiang P, Zhang Z. Enhanced inactivation of Escherichia coli by ultrasound combined with peracetic acid during water disinfection. CHEMOSPHERE 2023; 322:138095. [PMID: 36758811 DOI: 10.1016/j.chemosphere.2023.138095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Peracetic acid (PAA) is a desirable disinfectant for municipal wastewater because of its potent disinfection performance and limited toxic by-products. This study explored the efficiency and mechanism of Escherichia coli inactivation by PAA combined with ultrasound simultaneously (ultrasound + PAA) or (ultrasound → PAA) sequentially. The result showed that 60 kHz ultrasound combined with PAA sequentially (60 kHz → PAA) had excellent inactivation performance on E. coli, up to 4.69-log10. The result also showed that the increase of pH and humic acid concentration in solution significantly reduced the inactivation efficiency of 60 kHz → PAA treatment. We also observed that the increase of temperature was beneficial to the disinfection, while anions (Cl-; HCO3-) had little effect. With 60 kHz → PAA, the PAA and the synergism between PAA and ultrasound played major contribution to the inactivation, which we assumed might be due to both the diffusion of PAA into the cells and the damage to the cytomembrane by ultrasound, as evidenced through the laser confocal microscopy (LSCM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The inactivation mechanism involved the destruction of cell membrane and loss of intracellular material. Empirically, 60 kHz → PAA was found to be effective for the inactivation of E. coli in actual wastewater, and the regrowth potential of E. coli treated by 60 kHz → PAA was significantly lower than that treated only by PAA.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chunhai Shi
- Northwest China Municipal Engineering Design and Research Institute, Lanzhou, 730000, China
| | - Yuanhang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Haocheng Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Ruiting Chang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chuanyao Yang
- Analysis and Testing Center, Chongqing University, Chongqing, 400045, China
| | - Kedi Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Ping Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
5
|
Gu G, Murphy CM, Hamilton AM, Zheng J, Nou X, Rideout SL, Strawn LK. Effect of pesticide application on
Salmonella
survival on inoculated tomato leaves. J Food Saf 2023. [DOI: 10.1111/jfs.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ganyu Gu
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA
- Environmental Microbial and Food Safety Laboratory United States Department of Agriculture‐Agricultural Research Service Beltsville Maryland USA
| | - Claire M. Murphy
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| | - Alexis M. Hamilton
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition US Food and Drug Administration College Park Maryland USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory United States Department of Agriculture‐Agricultural Research Service Beltsville Maryland USA
| | - Steven L. Rideout
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA
| | - Laura K. Strawn
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| |
Collapse
|
6
|
Laranja DC, Cacciatore FA, Malheiros PDS, Tondo EC. Application of peracetic acid by spray or immersion in chicken carcasses to reduce
cross‐contamination
in the slaughter process. J Food Saf 2022. [DOI: 10.1111/jfs.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Daniela Comparsi Laranja
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Fabíola Ayres Cacciatore
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Patrícia da Silva Malheiros
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Eduardo Cesar Tondo
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| |
Collapse
|
7
|
Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W. Degradation mechanism and toxicity assessment of chlorpyrifos in milk by combined ultrasound and ultraviolet treatment. Food Chem 2022; 383:132550. [PMID: 35413755 DOI: 10.1016/j.foodchem.2022.132550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
Abstract
The aim of this study was to compare the degradation kinetics of chlorpyrifos by treatment with ultrasound (US), ultraviolet radiation (UV) and a combination of both (US/UV), to evaluate the toxicity of the degradation products and the effect of the treatments on milk quality. US/UV markedly accelerated the degradation of chlorpyrifos. The half-life of chlorpyrifos by US/UV was 6.4 min, which was greatly shortened compared to the treatment with US or UV alone. Five degradation products were identified by GC-MS, and a degradation pathway for chlorpyrifos was proposed, based on density functional theory calculations. According to the luminescent bacteria test and predictions from a structure/activity relationship model, the toxicity of the degradation products was lower than that of chlorpyrifos. In addition, US/UV treatment had little effect on the quality of the treated milk. Therefore, US/UV can be used as a potential non-thermal processing method to degrade pesticide residues in milk.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
8
|
Unal Turhan E, Polat S, Erginkaya Z, Konuray G. Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Pahariya P, Fisher DJ, Choudhary R. Comparative analyses of sanitizing solutions on microbial reduction and quality of leafy greens. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Effects of ultrasound and gamma irradiation on quality maintenance of fresh Lentinula edodes during cold storage. Food Chem 2021; 373:131478. [PMID: 34731791 DOI: 10.1016/j.foodchem.2021.131478] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/26/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022]
Abstract
Microbial infection, senescence and water losses result in serious quality deterioration of postharvest mushrooms. The aim of this study was to investigate the impact of ultrasound treatment (US), gamma irradiation treatment (GI) and their combination on quality maintenance of fresh Lentinula edodes during storage. The results showed that US + GI was the most effective approach to maintaining the quality of mushrooms. US + GI reduced natural microflora present on L. edodes, such as total number of colonies, molds, yeasts, Pseudomonas and Enterobacteriaceae. Furthermore, US + GI stimulated phenylalanine ammonia lyase, maintained the highest level of total phenolic content (733.63 mg GAE/kg on Day 4), and postponed the occurrence of reduced ascorbic acid (33.7% retention relative to the control), which contributed to strengthening the antioxidant capacity. Additionally, US + GI retarded water mobility and loss. In brief, the US + GI in this study is an effective hurdle technology for preserving the quality of fresh L. edodes during storage.
Collapse
|
11
|
Pelissari EMR, Covre KV, do Rosario DKA, de São José JFB. Application of chemometrics to assess the influence of ultrasound and chemical sanitizers on vegetables: Impact on natural microbiota, Salmonella Enteritidis and physicochemical nutritional quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Görgüç A, Gençdağ E, Okuroğlu F, Yılmaz FM, Bıyık HH, Öztürk Köse S, Ersus S. Single and combined decontamination effects of power-ultrasound, peroxyacetic acid and sodium chloride sanitizing treatments on Escherichia coli, Bacillus cereus and Penicillium expansum inoculated dried figs. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Gençdağ E, Görgüç A, Okuroğlu F, Yılmaz FM. The effects of power ‐ ultrasound, peroxyacetic acid and sodium chloride washing treatments on the physical and chemical quality characteristics of dried figs. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Fulya Okuroğlu
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| |
Collapse
|
15
|
COSWOSCK KHC, GIORGETTE MA, LEPAUS BM, SILVA EMMD, SENA GGS, AZEVEDO MCDA, SÃO JOSÉ JFBD. Impact of alternative sanitizers on the physicochemical quality, chlorophyll content and bioactive compounds of fresh vegetables. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.02320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
He Q, Guo M, Jin TZ, Arabi SA, Liu D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int J Food Microbiol 2020; 337:108936. [PMID: 33161345 DOI: 10.1016/j.ijfoodmicro.2020.108936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Development of novel and effective decontamination technologies to ensure the microbiological safety of fresh produce has gained considerable attention, mainly driven by numerous outbreaks. This work presented the first approach regarding to the application of the previously reported hurdle technologies on the sanitization of artificially contaminated cherry tomatoes. Thyme (Thymus daenensis) essential oil nanoemulsion (TEON, 8.28 nm in diameter with a narrow size distribution) was formulated via ultrasonic nanoemulsification, showing remarkably improved antimicrobial activity against Escherichia coli (E. coli) O157:H7, compared to the coarse emulsion. The antimicrobial effect of ultrasound (US), thyme essential oil nanoemulsion (TEON) and the combination of both treatments was assessed against E. coli O157:H7. The remarkable synergistic effects of the combined treatments were achieved, which decontaminated the E. coli populations by 4.49-6.72 log CFU/g on the surface of cherry tomatoes, and led to a reduction of 4.48-6.94 log CFU/sample of the total inactivation. TEON combined with US were effective in reducing the presence of bacteria in wastewater, which averted the potential detrimental effect of cross-contamination resulted from washing wastewater in fresh produce industry. Moreover, the treatments did not noticeably alter the surface color and firmness of cherry tomatoes. Therefore, ultrasound combined with TEON is a promising and feasible alternative for the reduction of microbiological contaminants, as well as retaining the quality characteristics of cherry tomatoes.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
17
|
Wan J, Lu Z, Bie X, Lv F, Zhao H. Improvement of a new selective enrichment broth for culturing
Salmonella
in ready‐to‐eat fruits and vegetables. J Food Saf 2020. [DOI: 10.1111/jfs.12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiajia Wan
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| |
Collapse
|
18
|
Rosario DKA, Rodrigues BL, Bernardes PC, Conte-Junior CA. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit Rev Food Sci Nutr 2020; 61:1163-1183. [PMID: 32319303 DOI: 10.1080/10408398.2020.1754755] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods of food preservation have demonstrated several disadvantages and limitations in the efficiency of the microbial load reduction and maintain food quality. Hence, non-thermal preservation technologies (NTPT) and alternative chemical compounds (ACC) have been considered a high promissory replacer to decontamination, increasing the shelf life and promoting low levels of physicochemical, nutritional and sensorial alterations of meat and fish products. The combination of these methods can be a potential alternative to the food industry. This review deals with the most critical aspects of the mechanisms of action under microbial, physicochemical, nutritional and sensorial parameters and the efficiency of the different NTPT (ultrasound, high pressure processing, gamma irradiation and UV-C radiation) and ACC (peracetic acid, bacteriocins, nanoparticles and essential oils) applied in meat and fish products. The NTPT and ACC present a high capacity of microorganisms inactivation, ensuring low alterations level in the matrix and high reduction of environmental impact. However, the application conditions of the different methods as exposition time, energy intensity and concentration thresholds of chemical compounds need to be specifically established and continuously improved for each matrix type to reduce to the maximum the physicochemical, nutritional and sensorial changes. In addition, the combination of the methods (hurdle concept) may be an alternative to enhance the matrix decontamination. In this way, undesirable changes in meat and fish products can be further reduced without a decrease in the efficiency of the decontamination.
Collapse
Affiliation(s)
- Denes K A Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Bruna L Rodrigues
- Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Patricia C Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil.,National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Mutz YS, Rosario DKA, Bernardes PC, Paschoalin VMF, Conte-Junior CA. Modeling Salmonella Typhimurium Inactivation in Dry-Fermented Sausages: Previous Habituation in the Food Matrix Undermines UV-C Decontamination Efficacy. Front Microbiol 2020; 11:591. [PMID: 32322246 PMCID: PMC7156554 DOI: 10.3389/fmicb.2020.00591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023] Open
Abstract
The effects of previous Salmonella Typhimurium habituation to an Italian-style salami concerning pathogen resistance against ultraviolet-C light (UV-C) treatment were modeled in order to establish treatment feasibility for the decontamination of dry-fermented sausage. S. Typhimurium following 24 h habituation in fermented sausage (habituated cells) or non-habituation (non-habituated cells) were exposed to increasing UV-C radiation treatment times. The Weibull model was the best fit for describing S. Typhimurium UV-C inactivation. Heterogeneity in UV-C treatment susceptibilities within the S. Typhimurium population was observed, revealing intrinsic persistence in a sub-population. UV-C radiation up to 1.50 J/cm2 was a feasible treatment for dry-fermented sausage decontamination, as the matrices retained instrumental color and lipid oxidation physiochemical characteristics. However, habituation in the sausage matrix led to a 14-fold increase in the UV-C dose required to achieve the first logarithm reduction (δ value) in S. Typhimurium population. The results indicate that, although UV-C radiation might be considered an efficient method for dry-fermented sausage decontamination, effective doses should be reconsidered in order to reach desirable food safety parameters while preserving matrix quality.
Collapse
Affiliation(s)
- Yhan S. Mutz
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denes K. A. Rosario
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia C. Bernardes
- Department of Food Engineering, Federal University of Espirito Santo, Alto Universitário, Alegre, Brazil
| | - Vania M. F. Paschoalin
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108666] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Alenyorege EA, Ma H, Ayim I, Lu F, Zhou C. Efficacy of sweep ultrasound on natural microbiota reduction and quality preservation of Chinese cabbage during storage. ULTRASONICS SONOCHEMISTRY 2019; 59:104712. [PMID: 31421620 DOI: 10.1016/j.ultsonch.2019.104712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of sweep frequency ultrasound (SFUS), sodium hypochlorite (NaOCl) and their combinations (SFUS + NaOCl) in reducing and inhibiting natural microbiota as well as preserving quality of fresh-cut Chinese cabbage during storage (4 °C and 25 °C) for up to 7 days was investigated. In effect, 40 kHz sweep frequency ultrasound in combination with 100 mg/L sodium hypochlorite resulted in maximum reduction and inhibition of mesophilic counts, yeast and molds and minimum chlorophyll depletion, weight loss and electrolyte leakage. However, colour and textural characteristics deteriorated. The combined treatment suppressed the activities of polyphenol oxidase and peroxidase and manifested its preservative effect after Fourier Transform near-infrared spectroscopy analysis. Synergistic reductions were recorded in most of the combined treatments though largely <1.0 log CFU/g. Specifically, the combined treatment significantly (P < 0.05) reduced mesophilic counts by an added 2.7 log CFU/g, yeasts and molds by an added 2.0 log CFU/g when compared to the individual treatments. During storage at 4 and 25 °C, washing with SFUS + NaOCl produced Chinese cabbage with lower microbial counts, in comparison with the individual treatments. However, post-treatment storage could not entirely inhibit microbial survival as populations increased during storage even at refrigeration temperature of 4 °C. The results demonstrate that ultrasound and sodium hypochlorite are promising hurdle alternatives for the reduction and inhibition of microorganisms, as well as prolonging the shelf life and retaining the quality characteristics of Chinese cabbage.
Collapse
Affiliation(s)
- Evans Adingba Alenyorege
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Agriculture, University for Development Studies, Tamale, Ghana.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| | - Ishmael Ayim
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Applied Science, Kumasi Technical University, Kumasi, Ghana
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
22
|
Nicolau-Lapeña I, Abadias M, Bobo G, Aguiló-Aguayo I, Lafarga T, Viñas I. Strawberry sanitization by peracetic acid washing and its effect on fruit quality. Food Microbiol 2019; 83:159-166. [DOI: 10.1016/j.fm.2019.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 11/28/2022]
|
23
|
Effect of power ultrasound on quality of fresh-cut lettuce (cv. Vera) packaged in passive modified atmosphere. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Ultrasound Processing Alone or in Combination with Other Chemical or Physical Treatments as a Safety and Quality Preservation Strategy of Fresh and Processed Fruits and Vegetables: A Review. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02313-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Ultrasound Improves Antimicrobial Effect of Sodium Hypochlorite and Instrumental Texture on Fresh-Cut Yellow Melon. J FOOD QUALITY 2018. [DOI: 10.1155/2018/2936589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultrasound combined with sanitizers is efficient for the reduction of microbiological contaminants in fruits and vegetables. However, the physicochemical changes remain to be elucidated. Therefore, the isolated and combined effect of ultrasound (40 kHz, 500 W) and sodium hypochlorite (NaOCl) (100 mg/L) for 5 min in the bacterial microbiota and physicochemical changes on yellow melon (Cucumis melo L.) were evaluated. Mesophilic aerobic bacteria (MAB), pH, total titratable acidity (TTA), and texture profile were performed. No changes in pH and TTA (p>0.05) were obtained. Firmness, chewiness, cohesiveness, and gumminess increased (p<0.05) after the ultrasound application. A synergistic effect between ultrasound and NaOCl in the MAB reduction was achieved. Therefore, ultrasound improves the antimicrobial effect of NaOCl and texture profile without undesirable chemical changes.
Collapse
|
26
|
Alenyorege EA, Ma H, Ayim I, Aheto JH, Hong C, Zhou C. Effect of multi-frequency multi-mode ultrasound washing treatments on physicochemical, antioxidant potential and microbial quality of tomato. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9980-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|