1
|
Liu W, Wang Z, Sun L, Du S, Ge G, Jia Y. Effects of Two Bacterial Exopolysaccharides on Microbial Community, Fermentation Characteristics and Aerobic Stability in Oat Silage. Microb Biotechnol 2025; 18:e70118. [PMID: 39988979 PMCID: PMC11847989 DOI: 10.1111/1751-7915.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigated whether two exopolysaccharides could serve as exogenous carbon sources to enhance fermentation quality in oat silage, providing a theoretical foundation for their future application in silage. The oats were harvested at the heading stage and, following a period of wilting, were chopped into 2-3 cm lengths for the ensiling experiment. The treatments applied were as follows: (1) a control group (CK), which received only sterile water; (2) a group with added dextran (D); and (3) a group with added levan (L). The fermentation process was monitored at various intervals: 3, 7, 14, 30 and 60 days (d), respectively. Following 60 days of ensiling, the silage was subjected to a 5-day period of aerobic exposure (AE). EPS changed the fermentation quality of silage, altered the composition of the bacterial community, and had an impact on the feature dissimilarity between sample groups. Meanwhile, EPS showed different regulatory effects on carbohydrate metabolism at different fermentation times. EPS treatment increased the lactic acid content and decreased the pH of silage. After 60 days of fermentation, the treatment also increased the relative abundance of Lactobacillus. Dextran and levan increased the relative abundance of Hafnia-Obesumbacterium and Sediminibacterium, respectively. Under the treatment of dextran, silage retained more WSC content and achieved higher aerobic stability. Upon comparing the bacterial correlation networks, it became evident that the fermentation time altered the composition of inter-bacterial correlations. In conclusion, EPS can effectively enhance the fermentation quality of oat silage, with dextran yielding the most pronounced positive effects.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Forage CultivationProcessing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs; Inner Mongolia Agricultural UniversityHohhotChina
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
| | - Zhijun Wang
- Key Laboratory of Forage CultivationProcessing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs; Inner Mongolia Agricultural UniversityHohhotChina
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry SciencesHohhotChina
| | - Shuai Du
- Key Laboratory of Forage CultivationProcessing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs; Inner Mongolia Agricultural UniversityHohhotChina
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
| | - Gentu Ge
- Key Laboratory of Forage CultivationProcessing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs; Inner Mongolia Agricultural UniversityHohhotChina
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
| | - Yushan Jia
- Key Laboratory of Forage CultivationProcessing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs; Inner Mongolia Agricultural UniversityHohhotChina
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
2
|
Vijayalakshmi S, Kim JR, Chelliah R, Barathikannan K, Tyagi A, Aloo SO, Chen X, Yan P, Shan L, Oh DH. Encapsulating potential and functional properties of exopolysaccharide from Limosilactobacillus reuteri KCTC 14626BP isolated from human breast milk. Int J Biol Macromol 2023; 253:127330. [PMID: 37832623 DOI: 10.1016/j.ijbiomac.2023.127330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Exopolysaccharides (EPS) are natural, nontoxic, biocompatible and biodegradable macromolecules produced by microorganisms, including the Lactic acid bacteria, to enhance protection against environmental stress conditions. The current study focused on the encapsulation and functional efficiency of EPS produced by probiotic strains isolated from human milk. Among 27 isolates, the potential high EPS-producing strain Limosilactobacillus reuteri KCTC 14626BP was selected based on biofilm production. The structural Characterization of EPS was performed based on FTIR, NMR and functional properties were determined; further, the encapsulation efficiency of EPS was determined with caffeic acid. The results indicate that L. reuteri produced EPS major component consisting of glucose, galactose and arabinose with the ratio of (0.78:0.16: 0.05). The antioxidant efficiency of EPS-LR was determined on DPPH (60.3 %) and ABTS (48.9 %); EPS showed enhanced functional activities. The absence of toxicity was confirmed based on Caenorhabditis elegans. The EPS-loaded Caffeic acid (CA) EPS-LR indicated spherical capsules with rough surfaces, with sizes ranging from 1.39 to 6.75 μm. These findings indicate that EPS-LR can be applied as a bioactive compound and encapsulating material in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Centre Of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Jong-Rai Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, South Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, South Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Simon-Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Xiuqin Chen
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Lingyue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
3
|
The Profile of Exopolysaccharides Produced by Various Lactobacillus Species from Silage during Not-Fat Milk Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) and released into fermented milk play a protective role from stress factors as well as improve emulsifying and thickening properties of the product, reduce syneresis, and increase elasticity. Here we report the relationship between the properties, composition, and microstructure of EPS produced by six different strains of lactobacilli (L. bulgaricus and five strains isolated from silage). The presence of fructose together with negative-charged uronic acid was found to play a significant role in changing the EPS properties. Thus, the increased fraction of rhamnose and arabinose and a decrease in xylose leads to compaction of the EPS, decreased porosity and increased both OH- and superoxide scavenging and Fe-chelating activities. By contrast, increased xylose and low rhamnose and arabinose apparently leads to loss of large aggregates and high DPPH activity and FRAP. The high content of glucose, however, provides the formation of large pores. The increased fructan fraction (69.9 mol%) with a high fraction of galacturonic (18.2 mol%) and glucuronic acids (6.7 mol%) apparently determines the highly porous spongy-folded EPS microstructure. Taken together, our results indicate that both the quantitative characteristics of the individual components of the fraction and the structural features of EPS are important for the antioxidant potential of fermented milk and depend on the strain used for milk fermentation, suggesting the advantage of a multicomponent starter to achieve the optimal beneficial properties of fermented milk.
Collapse
|
4
|
Feeding Lactic Acid Bacteria with Different Sugars: Effect on Exopolysaccharides (EPS) Production and Their Molecular Characteristics. Foods 2023; 12:foods12010215. [PMID: 36613431 PMCID: PMC9819028 DOI: 10.3390/foods12010215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Exopolysaccharides (EPS) are complex molecules produced by some microorganisms and used in foods as texturizers and stabilizers, their properties depending on their chemical structure. In this work, three different lactic acid bacteria (LAB), were tested for their ability to produce EPS, by using five different mono- and disaccharides as their sole carbon source. The growth and acidifying ability were analysed, the EPSs were quantified by the official method AOAC 991.43, and their chemical structure was investigated. The amount of EPS varied from 0.71 g/L to 2.38 g/L, and maltose was the best sugar for EPS production by Lacticaseibacillus paracasei 2333. Lacticaseibacillus rhamnosus 1019 produced the highest amount when fed with lactose, whereas the EPS amount of Lactobacillus bulgaricus 1932 was not significantly different depending on the sugar type. The EPS chains consisted of fructose, galactose, glucose, mannose, ribose, glucosamine, galactosamine, and in some cases rhamnose in different proportions, depending on the strain and carbon source. The molecular weight of EPS ranged from <10 KDa to >500 KDa and was again highly dependent on the strain and the sugar used, suggesting the possibility of growing different strains under different conditions to obtain EPS with different potential applications in the food system.
Collapse
|
5
|
Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus. Appl Biochem Biotechnol 2022; 195:3928-3940. [PMID: 35947292 DOI: 10.1007/s12010-022-04104-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
This work aimed to investigate the effect of EPS (extracellular polysaccharide) of Weissella cibaria as a prebiotic to promote the growth and antibacterial properties of Lactobacillus rhamnosus. The morphological, growth behavior, and antibacterial properties of L. rhamnosus were determined in MRSB (de Man Rogosa Sharpe broth) supplemented with different concentrations of EPS (0.1-2%). The results revealed that the incorporation of the EPS (2%) in MRSA improved the bacterial growth in terms of colony-forming unit (CFU, 0.7 × 105 CFU/mL) compared to L. rhamnosus grown in bare MRSA. The SEM observation revealed that EPS incorporation in the MRSB culture media does not affect the morphological properties of L. rhamnosus. Moreover, it was confirmed that the extract of probiotics cultured in MRSA supplemented with EPS (2%) was exhibited strong antibacterial and antibiofilm activity against targeted pathogens. This L. rhamnosus extract was found to be biocompatible evidanced by erythrocyte hemolysis assay. These results confirmed that EPS regulates the growth of probiotics, resists pathogen infection, and biocompatibility.
Collapse
|
6
|
Nguyen TT, Nguyen PT, Pham MN, Razafindralambo H, Hoang QK, Nguyen HT. Synbiotics: a New Route of Self-production and Applications to Human and Animal Health. Probiotics Antimicrob Proteins 2022; 14:980-993. [PMID: 35650337 DOI: 10.1007/s12602-022-09960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
Abstract
Synbiotics are preparations in which prebiotics are added to probiotics to achieve superior performance and benefits on the host. A new route of their formation is to induce the prebiotic biosynthesis within the probiotic for synbiotic self-production or autologous synbiotics. The aim of this review paper is first to overview the basic concept and (updated) definitions of synergistic synbiotics, and then to focus particularly on the prebiotic properties of probiotic wall components while describing the environmental factors/stresses that stimulate autologous synbiotics, that is, the biosynthesis of prebiotic-forming microcapsule by probiotic bacteria, and finally to present some of their applications to human and animal health.
Collapse
Affiliation(s)
- Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | | | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
7
|
Letizia F, Albanese G, Testa B, Vergalito F, Bagnoli D, Di Martino C, Carillo P, Verrillo L, Succi M, Sorrentino E, Coppola R, Tremonte P, Lombardi SJ, Di Marco R, Iorizzo M. In Vitro Assessment of Bio-Functional Properties from Lactiplantibacillus plantarum Strains. Curr Issues Mol Biol 2022; 44:2321-2334. [PMID: 35678687 PMCID: PMC9164048 DOI: 10.3390/cimb44050158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, alongside the conventional screening procedures for the evaluation of probiotics for human usage, the pharmaceutical and food industries have encouraged scientific research towards the selection of new probiotic bacterial strains with particular functional features. Therefore, this study intended to explore novel functional properties of five Lactiplantibacillus plantarum strains isolated from bee bread. Specifically, antioxidant, antimicrobial and β-glucosidase activities, exopolysaccharides (EPS) production and the ability to synthesize γ-aminobutyric acid (GABA) were evaluated. The results demonstrated that the investigated L. plantarum strains were effective in inhibiting the growth of some human opportunistic pathogens in vitro (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Enterococcus faecalis and Staphylococcus aureus). Moreover, the evaluation of antioxidant and β-glucosidase activity and of EPS and GABA production, revealed a different behavior among the strains, testifying how these properties are strongly strain-dependent. This suggests that a careful selection within a given species is important in order to identify appropriate strains for specific biotechnological applications. The results highlighted that the five strains of L. plantarum are promising candidates for application as dietary supplements in the human diet and as microbial cultures in specific food productions.
Collapse
Affiliation(s)
- Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Gianluca Albanese
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Franca Vergalito
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Diletta Bagnoli
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Catello Di Martino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Petronia Carillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Lucia Verrillo
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council (CNR), 80131 Naples, Italy;
| | - Mariantonietta Succi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Elena Sorrentino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
- Correspondence: (E.S.); (M.I.)
| | - Raffaele Coppola
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Patrizio Tremonte
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Silvia Jane Lombardi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.L.); (G.A.); (B.T.); (F.V.); (D.B.); (C.D.M.); (M.S.); (R.C.); (P.T.); (S.J.L.)
- Correspondence: (E.S.); (M.I.)
| |
Collapse
|
8
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
9
|
Abstract
Exopolysaccharides (EPS) are biopolymers produced by many microorganisms, including some species of the genus Acetobacter, Bacillus, Fructobacillus, Leuconostoc, Lactobacillus, Lactiplantibacillus, Pediococcus, Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, and Sphingomonas, which have been reported in the microbiota of traditional fermented beverages. Dextran, levan, glucan, gellan, and cellulose, among others, are EPS produced by these genera. Extracellular biopolymers are responsible for contributing to specific characteristics to fermented products, such as modifying their organoleptic properties or contributing to biological activities. However, EPS can be easily found in the dairy industry, where they affect rheological properties in products such as yogurt or cheese, among others. Over the years, LAB has been recognized as good starter strains in spontaneous fermentation, as they can contribute beneficial properties to the final product in conjunction with yeasts. To the best our knowledge, several articles have reported that the EPS produced by LAB and yeasts possess many both biological and technological properties that can be influenced by many factors in which fermentation occurs. Therefore, this review presents traditional Mexican fermented beverages (tavern, tuba, sotol, and aguamiel) and relates them to the microbial EPS, which affect biological and techno-functional activities.
Collapse
|
10
|
Tiwari S, Kavitake D, Devi PB, Halady Shetty P. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int J Biol Macromol 2021; 183:1585-1595. [PMID: 34044028 DOI: 10.1016/j.ijbiomac.2021.05.140] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Exopolysaccharides (EPS) are known to have technological and functional applications in food industry including dairy based products such as yoghurt. Yoghurt is a widely consumed dairy based product due to pleasant taste and texture, as well as a source of nutrients and bioactive compounds. At the same time, structural, rheological and sensorial properties are important in the production of good quality yoghurt. Various natural hydrocolloids including EPS with stabilizing and texture enhancing properties could be useful in enhancing these desirable properties. Apart from that, EPS may enhance various other functional properties of yoghurt such as antioxidant and prebiotic potential. Based on its prebiotic property, symbiotic products could be developed by combining EPS and probiotic bacterial strains. EPS has potential to provide physical and micro structural stability, thereby enhancing the protein distribution and viscoelastic properties. Main focus of the present review is to provide an insight on the action of EPS as a functional hydrocolloid on the technological, rheological and functional properties of yoghurt and related products.
Collapse
Affiliation(s)
- Swati Tiwari
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Digambar Kavitake
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | | |
Collapse
|
11
|
Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Lobo RE, Figueroa T, Navarro D, Gómez MI, Font de Valdez G, Torino MI. Techno-functional properties of HoPS from lactic acid bacteria of different origins as potential food additives. Food Chem 2021; 356:129627. [PMID: 33839531 DOI: 10.1016/j.foodchem.2021.129627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Homopolysaccharides (HoPS) produced by lactic acid bacteria (LAB) are highly versatile, biocompatible and safe compounds. In this work, six HoPS from different species of Weisella and Leuconostoc were identified as thermally stable dextrans, with endothermic crystalline deformations between 214 and 239 °C. These dextrans proved to have greater solubility and capacities to retain water and oil than similar polymers in other reports. Furthermore, a surface morphology study presented cubic grumps, stratify mesh with irregular grumps, and highly compact filaments. Assays in vitro revealed moderate antioxidant, browning and foaming activities as well as technological properties, such as anti-syneresis, emulsifying and flocculating activities, even at low concentrations. Taking into account bipolymers' microstructure, functionalities and performance in both, aqueous and hydrophobic matrixes, plus their capacity to maintain themselves at elevated temperatures, we consider these HoPS beneficial and natural food additives.
Collapse
Affiliation(s)
- René Emanuel Lobo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - Theo Figueroa
- Ludwig-Maximilians Universität (LMU), Department Biology I - Botanic, Faculty of Biology, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg - Martinsried, Munich, Germany.
| | - Diego Navarro
- Departamento de Química Orgánica (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428, Buenos Aires, Argentina.
| | - María Inés Gómez
- Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Batalla de Ayacucho 471, San Miguel de Tucumán 4000 Tucumán, Argentina.
| | - Graciela Font de Valdez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - María Inés Torino
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| |
Collapse
|
13
|
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020; 19:203. [PMID: 33160356 PMCID: PMC7648308 DOI: 10.1186/s12934-020-01464-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Human vagina is colonised by a diverse array of microorganisms that make up the normal microbiota and mycobiota. Lactobacillus is the most frequently isolated microorganism from the healthy human vagina, this includes Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii. These vaginal lactobacilli have been touted to prevent invasion of pathogens by keeping their population in check. However, the disruption of vaginal ecosystem contributes to the overgrowth of pathogens which causes complicated vaginal infections such as bacterial vaginosis (BV), sexually transmitted infections (STIs), and vulvovaginal candidiasis (VVC). Predisposing factors such as menses, pregnancy, sexual practice, uncontrolled usage of antibiotics, and vaginal douching can alter the microbial community. Therefore, the composition of vaginal microbiota serves an important role in determining vagina health. Owing to their Generally Recognised as Safe (GRAS) status, lactobacilli have been widely utilised as one of the alternatives besides conventional antimicrobial treatment against vaginal pathogens for the prevention of chronic vaginitis and the restoration of vaginal ecosystem. In addition, the effectiveness of Lactobacillus as prophylaxis has also been well-founded in long-term administration. This review aimed to highlight the beneficial effects of lactobacilli derivatives (i.e. surface-active molecules) with anti-biofilm, antioxidant, pathogen-inhibition, and immunomodulation activities in developing remedies for vaginal infections. We also discuss the current challenges in the implementation of the use of lactobacilli derivatives in promotion of human health. In the current review, we intend to provide insights for the development of lactobacilli derivatives as a complementary or alternative medicine to conventional probiotic therapy in vaginal health.
Collapse
Affiliation(s)
- Wallace Jeng Yang Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
14
|
Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics Antimicrob Proteins 2020; 13:468-483. [PMID: 32829420 DOI: 10.1007/s12602-020-09700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria (LAB) are important microorganisms for the food industry due to their functional activity, as starters and potential probiotic strains. With that in mind, we explored the LAB diversity in raw buffalo milk, screening for novel potential probiotic strains. A total of 11 strains were identified by combination of MALDI-TOF and partial 16S rDNA sequencing and selected as potential probiotic candidates. Bacteria innocuity assessment was performed by determining antimicrobial susceptibility and the presence of virulence factors. Antagonism activity against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus was assessed, as well as milk proteolytic activity and exopolysaccharides production. Seven strains were identified as innocuous and two of them, Lactobacillus rhamnosus LB1.5 and Lactobacillus paracasei LB6.4 were selected for further probiotic potential analyses. Both strains demonstrated adhesion ability to Caco-2 cells, coaggregated with S. aureus and E. coli and maintained cell viability after gastrointestinal simulation in vitro, suggesting their probiotic potential. Furthermore, the transcriptional response of Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 to in vitro acid stress was assessed by RT-qPCR targeting seven genes related to adhesion, aggregation, stress tolerance, DNA repair and central metabolism. The association between the transcriptional responses and the maintenance of cell viability after gastrointestinal simulation highlights the genetic ability as probiotic of the two selected strains. Finally, we have concluded that Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 are important probiotic candidates to further in vivo studies.
Collapse
|
15
|
Sampathkumar K, Tan KX, Loo SCJ. Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. iScience 2020; 23:101055. [PMID: 32339991 PMCID: PMC7186528 DOI: 10.1016/j.isci.2020.101055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
The applications of nanotechnology are wide ranging, and developing functional nanomaterials for agri-food applications from nature-derived polymers is widely conceived as a sustainable approach that is safer for human and animal consumption. In light of this, this review focuses on the advances in the development of nano-delivery systems using nature-derived polymers for agri-food applications. The review opens with a section detailing the different types of nature-derived polymers currently being used in various applications in the agri-food industry with a special mention on microbial extracellular polymeric materials. The major applications of nano-delivery systems in the food sector, such as food fortification and food preservation, as well as in the agricultural sector for controlled release of agrochemicals using nature-derived polymers are discussed. The review ends with a perspective on the safety and public perception of nano-enabled foods with a concluding remark on future directions of incorporating nano-delivery systems for agri-food purposes.
Collapse
Affiliation(s)
- Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kei Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Huang ML, Huang JY, Kao CY, Fang TJ. Fermented soymilk and soy and cow milk mixture, supplemented with orange peel fiber or Tremella flava fermented powder as prebiotics for high exopolysaccharide-producing Lactobacillus pentosus SLC 13. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4373-4382. [PMID: 30851051 DOI: 10.1002/jsfa.9671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND A high exopolysaccharide-producing Lactobacillus pentosus SLC 13 strain was isolated from mustard pickles and showed the characteristics of a probiotic. Orange peel fiber powder (OPFP) and Tremella flava fermented powder (TFP) were shown to be potential prebiotics for L. pentosus SLC 13. The present study aimed to further develop new symbiotic fermented lactic acid beverages using SLC 13 with different proportions of cow milk and soymilk as food substrates, as well as with OPFP or TFP as prebiotics. RESULTS Acidification rate (soymilk groups, 3.02-4.37 mU min-1 ; soymilk/milk mixture groups, 1.33-2.84 mU min-1 ) and fermentation time (soymilk groups, 7.09-9.25 h; soymilk/milk mixture groups, 12.51-27.34 h) indicated that soymilk represents a suitable substrate for SLC 13-mediated fermentation. Moreover, OPFP and TFP induced a higher exopolysaccharide production of SLC 13 and a higher water holding capacity of fermented beverages. Sensory evaluations suggested that soymilk groups fermented with 10 g kg-1 OPFP (SF-1.0P) and that with 5 g kg-1 TFP (SF-0.5T) and also soymilk/milk mixture groups fermented with 5 g kg-1 OPFP (HSMF-0.5P) and that with 10 g kg-1 TFP (HSMF-1.0T) represent potential fermented drinks. Additionally, SF-1.0P and SF-0.5T products could be preserved for at least 21 days at 4 °C, with high viable cell counts (> 8.8 log10 CFU mL-1 ) and water holding capacity. CONCLUSION In the present study, we developed SF-1.0P and SF-0.5T products as a new symbiotic fermented lactic acid beverages. However, in the future, consumer acceptability could be improved by properly regulating the ratio of sugar to acid or seasoning. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min-Lang Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jing-Yao Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yen Kao
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony J Fang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Food Industry Research and Development Institute, Hsinchu, Taiwan
| |
Collapse
|
18
|
Verruck S, Balthazar CF, Rocha RS, Silva R, Esmerino EA, Pimentel TC, Freitas MQ, Silva MC, da Cruz AG, Prudencio ES. Dairy foods and positive impact on the consumer's health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:95-164. [PMID: 31351531 DOI: 10.1016/bs.afnr.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the present chapter was to demonstrate the state of the art in the recent advances in nutritional and functional components of dairy products research. In this chapter, the main mechanisms responsible and essential for a better understanding of nutritional and functional values of the components of milk and dairy products are highlighted. It also includes a discussion about the positive impacts of fermented milk, cheese, butter, ice cream, and dairy desserts components on the consumer's health.
Collapse
Affiliation(s)
- Silvani Verruck
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | | | - Ramon Silva Rocha
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Ramon Silva
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | | | | | | | - Marcia Cristina Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Adriano Gomes da Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil.
| | - Elane Schwinden Prudencio
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| |
Collapse
|
19
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|