1
|
Joyjamras K, Chaotham C, Chanvorachote P. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates. PHARMACEUTICAL BIOLOGY 2022; 60:308-318. [PMID: 35148231 PMCID: PMC8843116 DOI: 10.1080/13880209.2022.2032208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Sericin, a protein found in wastewater from the silk industry, was shown to contain a variety of biological activities, including antioxidant. The enzymatic conditions have been continuously modified to improve antioxidant effect and scavenging capacity against various free radicals of silk sericin protein. OBJECTIVE Variables in enzymatic reactions, including pH, temperature and enzyme/substrate ratio were analysed to discover the optimum conditions for antioxidant activity of sericin hydrolysates. MATERIALS AND METHODS Hydrolysis reaction catalysed by Alcalase® was optimized through response surface methodology (RSM) in order to generate sericin hydrolysates possessing potency for % inhibition on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, ferric-reducing power and peroxyl scavenging capacity. Flow cytometry was performed to evaluate cellular ROS level in human HaCaT keratinocytes and melanin-generating MNT1 cells pre-treated either with 20 mg/mL RSM-optimized sericin hydrolysates or 5 mM N-acetyl cysteine (NAC) for 60 min prior exposure with 1 mM hydrogen peroxide (H2O2). RESULTS Among these three variables, response surface plots demonstrate the major role of temperature on scavenging capacity of sericin hydrolysates. Sericin hydrolysates prepared by using Alcalase® at RSM-optimized condition (enzyme/substrate ratio: 1.5, pH: 7.5, temperature: 70 °C) possessed % inhibition against H2O2 at 99.11 ± 0.54% and 73.25 ± 8.32% in HaCaT and MNT1 cells, respectively, while pre-treatment with NAC indicated the % inhibition only at 30.26 ± 7.62% in HaCaT and 51.05 ± 7.14% in MNT1 cells. DISCUSSION AND CONCLUSIONS The acquired RSM information would be of benefit for further developing antioxidant peptide from diverse resources, especially the recycling of waste products from silk industry.
Collapse
Affiliation(s)
- Keerati Joyjamras
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Millan GCL, Veras FF, Stincone P, Pailliè-Jiménez ME, Brandelli A. Biological activities of whey protein hydrolysate produced by protease from the Antarctic bacterium Lysobacter sp. A03. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Vieira MC, Brandelli A, Thys RCS. Evaluation of the technological functional properties and antioxidant activity of protein hydrolysate obtained from brewers’ spent grain. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matheus Cardoso Vieira
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (ICTA‐UFRGS), Av. Bento Gonçalves, 9500 Porto Alegre Brazil
| | - Adriano Brandelli
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (ICTA‐UFRGS), Av. Bento Gonçalves, 9500 Porto Alegre Brazil
| | - Roberta Cruz Silveira Thys
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (ICTA‐UFRGS), Av. Bento Gonçalves, 9500 Porto Alegre Brazil
| |
Collapse
|
4
|
Joyjamras K, Netcharoensirisuk P, Roytrakul S, Chanvorachote P, Chaotham C. Recycled Sericin Hydrolysates Modified by Alcalase ® Suppress Melanogenesis in Human Melanin-Producing Cells via Modulating MITF. Int J Mol Sci 2022; 23:3925. [PMID: 35409284 PMCID: PMC8999004 DOI: 10.3390/ijms23073925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Because available depigmenting agents exhibit short efficacy and serious side effects, sericin, a waste protein from the silk industry, was hydrolyzed using Alcalase® to evaluate its anti-melanogenic activity in human melanin-producing cells. Sericin hydrolysates consisted of sericin-related peptides in differing amounts and smaller sizes compared with unhydrolyzed sericin, as respectively demonstrated by peptidomic and SDS-PAGE analysis. The lower half-maximum inhibitory concentration (9.05 ± 0.66 mg/mL) compared with unhydrolyzed sericin indicated a potent effect of sericin hydrolysates on the diminution of melanin content in human melanoma MNT1 cells. Not only inhibiting enzymatic activity but also a downregulated expression level of tyrosinase was evident in MNT1 cells incubated with 20 mg/mL sericin hydrolysates. Quantitative RT-PCR revealed the decreased mRNA level of microphthalmia-associated transcription factor (MITF), a tyrosinase transcription factor, which correlated with the reduction of pCREB/CREB, an upstream cascade, as assessed by Western blot analysis in MNT1 cells cultured with 20 mg/mL sericin hydrolysates for 12 h. Interestingly, treatment with sericin hydrolysates for 6-24 h also upregulated pERK, a molecule that triggers MITF degradation, in human melanin-producing cells. These results warrant the recycling of wastewater from the silk industry for further development as a safe and effective treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Keerati Joyjamras
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand;
| | - Ponsawan Netcharoensirisuk
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Luo S, Zhang Q, Yang F, Lu J, Peng Z, Pu X, Zhang J, Wang L. Analysis of the Formation of Sauce-Flavored Daqu Using Non-targeted Metabolomics. Front Microbiol 2022; 13:857966. [PMID: 35401474 PMCID: PMC8988067 DOI: 10.3389/fmicb.2022.857966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Sauce-flavored Daqu exhibits different colors after being stacked and fermented at high temperatures. Heiqu (black Daqu, BQ) with outstanding functions is difficult to obtain because its formation mechanism is unclear. In this study, we compared the metabolites in different types of Daqu using ultra-high-performance liquid chromatography triple quadrupole mass spectrometry to explore the formation process of BQ. We found that 251 differential metabolites were upregulated in BQ. Metabolic pathway analysis showed that "tyrosine metabolism" was enriched, and most metabolites in this pathway were differential metabolites upregulated in BQ. The tyrosine metabolic pathway is related to enzymatic browning and melanin production. In addition, the high-temperature and high-humidity fermentation environment of sauce-flavored Daqu promoted an increase in the melanoidin content via a typical Maillard reaction; thus, the melanoidin content in BQ was much higher than that in Huangqu and Baiqu. By strengthening the Maillard reaction precursor substances, amino acids, and reducing sugars, the content of Daqu melanoidin increased significantly after simulated fermentation. Therefore, the enzymatic browning product melanin and Maillard reaction product melanoidin are responsible for BQ formation. This study revealed the difference between BQ and other types of Daqu and provides theoretical guidance for controlling the formation of BQ and improving the quality of liquor.
Collapse
Affiliation(s)
- Shuai Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | | | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
| | - Jianjun Lu
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiuxin Pu
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, China
| |
Collapse
|
6
|
Hamdan N, Lee CH, Wong SL, Fauzi CENCA, Zamri NMA, Lee TH. Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules 2022; 27:1101. [PMID: 35164369 PMCID: PMC8839884 DOI: 10.3390/molecules27031101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food quality and appearance. Thus, a safe and effective alternative method from natural sources is needed to tackle enzymatic browning prevention. The capabilities of natural anti-browning agents derived from plant- and animal-based resources in inhibiting enzymatic activity have been demonstrated in the literature. Some also possess strong antioxidants properties. This review aims to summarize a recent investigation regarding the use of natural anti-browning extracts from different sources for controlling the browning. The potential applications of genome-editing in preventing browning activity and improving postharvest quality is also discussed. Moreover, the patents on the anti-browning extract from natural sources is also presented in this review. The information reviewed here could provide new insights, contributing to the development of natural anti-browning extracts and genome-editing techniques for the prevention of food browning.
Collapse
Affiliation(s)
- Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Syie Luing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Department of Matem’atica Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electronica, Universidad Rey Juan Carlos, C/Tulip’an s/n, M´ostoles, 28933 Madrid, Spain
| | - Che Ellysa Nurshafika Che Ahmad Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Nur Mirza Aqilah Zamri
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Johor, Malaysia
| |
Collapse
|
7
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Palamutoğlu R. Antibrowning effect of commercial and acid-heat coagulated whey on potatoes during refrigerated storage. J Food Sci 2020; 85:3858-3865. [PMID: 32990412 DOI: 10.1111/1750-3841.15468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
Potato color turns to brown after some process such as peeling, cutting, and slicing. In this research, the effect of acid-heat coagulated whey and commercial whey solutions on the color, polyphenol oxidase, phenylalanine ammonia-lyase activity, malondialdehyde, hydrogen peroxide content of potatoes were compared with pure water (control) immersion and sodium hydrogen sulfide solution. According to color results, there was no significant (P > 0.05) difference was found in the L* and b* values, browning index, and whitening index of the treatment groups. The polyphenol oxidase activity of the sulfide and commercial whey solution groups decreased from the initial values on day 3 then increased over that value. The use of the whey solution in preventing polyphenol oxidase activity showed a similar curve with the use of the sulfide solution. A rapid increase was observed in the malondialdehyde and hydrogen peroxide values of all treatment groups during the first 3-day storage. PRACTICAL APPLICATION: Immersion of potato cubes to whey protein solution prevents the browning and inhibits polyphenol oxidase activity. The browning index of the samples was not affected by the immersing water or whey solutions.
Collapse
Affiliation(s)
- Recep Palamutoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS One 2019; 14:e0226834. [PMID: 31887121 PMCID: PMC6936807 DOI: 10.1371/journal.pone.0226834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023] Open
Abstract
The present work reports the enzymatic valorisation of the protein fraction of scotta, a dairy by-product representing the exhausted liquid residue of ricotta production. Scotta was subjected to ultra-filtration with membrane cut-offs from 500 to 4 kDa and the obtained protein-enriched fractions were used for the optimization of enzyme-based digestions aimed at producing potentially bioactive peptides. Nine different commercial proteases were tested and the best digestion conditions were selected based on protein yield, fraction bioactivity and foreseen scale up processing costs. Scale up of the 3% Pancreatin or 5% Papain processes was performed up to 2 L (37°C or 60°C respectively, 1 h incubation), and the digestion efficiency increased with the reaction volume as well as antioxidant activity (up to 60 gBSA eq/L and to 1.7 gAA eq/L). Retentate 1 digested fractions also showed, for the first time in dairy-based peptides, anti-tyrosinase activity, up to 0.14 gKA eq/L. Digested proteins were sub-fractionated by means of physical membrane separations and 30-10 kDa fraction from Papain treatment showed the highest antioxidant and anti-tyrosinase activities. The peptide sequence of the most bioactive fractions was achieved.
Collapse
|