1
|
Ma S, Cai C, Lu Q, Tan Z. A review of green solvents for the extraction and separation of bioactive ingredients from natural products. Food Chem 2025; 478:143703. [PMID: 40054198 DOI: 10.1016/j.foodchem.2025.143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/25/2025] [Accepted: 03/01/2025] [Indexed: 04/06/2025]
Abstract
Bioactive substances from natural products are good resources from the pharmaceutical and food industries. Conventional organic solvents are widely used for extracting and separating bioactive substances. Recently, various environmentally friendly solvents have been developed and applied in the separation field to replace conventional organic solvents. This review focuses on environmentally friendly solvents for the extraction and separation technologies that meet the requirements of green chemistry. The classifications, applications, influencing factors, and mechanisms involved in the extraction processes using these green solvents are also discussed. Green solvent-based extraction systems are promising alternatives to traditional organic solvents. Green solvents are mild and non-destructive to the active compounds during their application and have negligible effects on the ecosystem when discharged. The use of green solvents for the extraction and separation of active ingredients in natural products is attracting attention because of their low environmental impact and sustainability.
Collapse
Affiliation(s)
- Shaoping Ma
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Changyong Cai
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qianwen Lu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China,.
| |
Collapse
|
2
|
Nuralın L, Taşdemir C. A new and highly efficient source of t-resveratrol: Cephalaria Syriaca (L.) Roem. & Schult. Food Chem 2024; 460:140790. [PMID: 39146720 DOI: 10.1016/j.foodchem.2024.140790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Recently, interest in bioactive plant compounds has increased due to their properties in preventing and treating diseases like cancer and neurodegenerative disorders. In this study, caffeic acid and t-resveratrol were extracted from Cephalaria syriaca seeds using ultrasonic assisted extraction (UAE) and supercritical carbon dioxide (Sc-CO2) extraction methods. Independent variables were temperature (40, 60, 80 °C), pressure (130, 215, and 300 bar), and co-solvent ratio (ethanol v/v (3.0, 6.5, 10.0%)) were selected. While extraction process conditions were optimized using response surface methodology, polyphenols were determined by an HPLC system. As a result of the Sc-CO2 experimental studies, maximum caffeic acid (88.75 ± 1.71 μg/g dw) was obtained at 80 °C, 130 bar, and 10% ethanol conditions and maximum t-resveratrol (2949.45 ± 51.78 μg/g dw) was obtained at 60 °C, 130 bar, and 6.5% ethanol conditions. The results of the UAE method were found to be 76.21 ± 2.40 μg/g dw caffeic acid and 4629 ± 123.2 μg/g dw t-resveratrol.
Collapse
Affiliation(s)
- Levent Nuralın
- Department of Chemical Engineering, Engineering faculty of Gazi University 06570 Cankaya, Ankara, Turkey.
| | - Cem Taşdemir
- Türkiye Ministry of Agriculture and Forestry 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Ben Dassi R, Ibidhi S, Jemai H, Cherif A, Driouich Chaouachi R. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio-ceramics. Phytother Res 2024; 38:5309-5322. [PMID: 39228146 DOI: 10.1002/ptr.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Resveratrol (RSV), a bioactive natural phenolic compound found in plants, fruits, and vegetables, has garnered significant attention in pharmaceutical, food, and cosmetic industries due to its remarkable biological and pharmacological activities. Despite its potential in treating various diseases, its poor pharmacokinetic properties, such as low solubility, stability, bioavailability, and susceptibility to rapid oxidation, limit its biomedical applications. Recent advancements focus on incorporating resveratrol into innovative materials like nanoparticles, polymers, and bio-ceramics to enhance its properties and bioavailability. In this review, an exhaustive literature search was conducted from PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases to explore these advancements, to compares conventional and innovative extraction methods, and to highlights resveratrol's therapeutic potential, including its anti-inflammatory, anti-oxidative, anti-cancerogenic, antidiabetic, neuroprotective, and cardio-protective properties. Additionally, we discuss the challenges and prospects of hybrid materials combining resveratrol with nanoparticles, polymers, and bio-ceramics for therapeutic applications. Rigorous studies are still needed to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Roua Ben Dassi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Salah Ibidhi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Hedya Jemai
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Rim Driouich Chaouachi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
4
|
Li W, Yuan H, Liu Y, Wang B, Xu X, Xu X, Hussain D, Ma L, Chen D. Current analytical strategies for the determination of resveratrol in foods. Food Chem 2024; 431:137182. [PMID: 37603999 DOI: 10.1016/j.foodchem.2023.137182] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Resveratrol, a non-flavonoid polyphenolic compound, possesses various beneficial properties such as anti-cancer, anti-aging, anti-bacterial, and antioxidant effects. It is naturally produced by many plants in response to stimulation. However, the content of resveratrol in natural plants can vary significantly, ranging from micrograms to milligrams per kilogram. As the demand for resveratrol increases, the development of methods for extracting and quantifying resveratrol in food has become a rapidly growing field in recent years. This review aims to comprehensively summarize the progress made in resveratrol analysis in food over the past decade (2012-2022), with a specific focus on the latest advancements in extraction and detection technologies. The objective is to offer a valuable reference for further research and utilization of resveratrol in various food applications.
Collapse
Affiliation(s)
- Wenxuan Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
5
|
Cao Z, Zhang Z, Wei D, Guo M, Li S, Cui H, Zhang Y, Zhang Y, Chen X. Enrichment Extraction and Activity Study of the Different Varieties of Hericium erinaceus against HCT-8 Colon Cancer Cells. Molecules 2023; 28:6288. [PMID: 37687116 PMCID: PMC10488996 DOI: 10.3390/molecules28176288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hericium erinaceus (HE), a widely utilized natural remedy and dietary source, has garnered significant attention for its therapeutic potential in various diseases. In this study, we employed supercritical fluid extraction (SFE) technology to isolate the bioactive compounds from HE's fruiting body. Comprehensive assessments of the antioxidant and antibacterial activities were conducted, along with in vitro investigations on the human colon cancer cell line (HCT-8). The SFE rate served as the evaluation metric, while the variables of extraction time, pressure, and temperature were systematically examined. By integrating the response surface center composite design, we successfully optimized the extraction process, yielding optimal parameters of 80 min, 30 MPa, and 35 °C, thus resulting in an extraction rate of 2.51%. These optimized conditions exhibited considerable antioxidant capacity, anticancer activity, and antibacterial potential. Furthermore, we employed graded alcohol extraction to refine the crude extracts, thereby confirming superior anticancer effects under a 70% alcohol precipitation. To elucidate the composition, Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were employed to analyze the crude extracts and isolates of HE, facilitating a comparative analysis of six HE varieties. Our findings suggest that sterol derivatives hold promise as the active component against the colon cancer HCT-8 cell line. In conclusion, this study underscores the potential of HE SFE in the development of functional foods or alternative drugs for colon cancer treatment, thus opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Zhongrui Cao
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhijun Zhang
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
| | - Dongsheng Wei
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingyu Guo
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Li
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
| | - Hanyuan Cui
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
| | - Yue Zhang
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
| | - Yuwei Zhang
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
| | - Xiaoming Chen
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China; (Z.C.)
| |
Collapse
|
6
|
Hashemi B, Shiri F, Švec F, Nováková L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Bou R, Navarro-Vozmediano P, Domínguez R, López-Gómez M, Pinent M, Ribas-Agustí A, Benedito JJ, Lorenzo JM, Terra X, García-Pérez JV, Pateiro M, Herrera-Cervera JA, Jorba-Martín R. Application of emerging technologies to obtain legume protein isolates with improved techno-functional properties and health effects. Compr Rev Food Sci Food Saf 2022; 21:2200-2232. [PMID: 35340098 DOI: 10.1111/1541-4337.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/17/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
Abstract
Current demand of consumers for healthy and sustainable food products has led the industry to search for different sources of plant protein isolates and concentrates. Legumes represent an excellent nonanimal protein source with high-protein content. Legume species are distributed in a wide range of ecological conditions, including regions with drought conditions, making them a sustainable crop in a context of global warming. However, their use as human food is limited by the presence of antinutritional factors, such as protease inhibitors, lectins, phytates, and alkaloids, which have adverse nutritional effects. Antitechnological factors, such as fiber, tannins, and lipids, can affect the purity and protein extraction yield. Although most are removed or reduced during alkaline solubilization and isoelectric precipitation processes, some remain in the resulting protein isolates. Selection of appropriate legume genotypes and different emerging and sustainable facilitating technologies, such as high-power ultrasound, pulsed electric fields, high hydrostatic pressure, microwave, and supercritical fluids, can be applied to increase the removal of unwanted compounds. Some technologies can be used to increase protein yield. The technologies can also modify protein structure to improve digestibility, reduce allergenicity, and tune technological properties. This review summarizes recent findings regarding the use of emerging technologies to obtain high-purity protein isolates and the effects on techno-functional properties and health.
Collapse
Affiliation(s)
- Ricard Bou
- Food Safety and Functionality Program, IRTA, Monells, Spain
| | - Paola Navarro-Vozmediano
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, València, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | | | - José J Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, València, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - José V García-Pérez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, València, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - José A Herrera-Cervera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rosa Jorba-Martín
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| |
Collapse
|
8
|
Bodoira R, Cecilia Cittadini M, Velez A, Rossi Y, Montenegro M, Martínez M, Maestri D. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chem 2022; 381:132250. [PMID: 35121321 DOI: 10.1016/j.foodchem.2022.132250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Peanuts contain a diverse and vast array of phenolic compounds having important biological properties. They are allocated mostly in the seed coat (skin), an industrial waste with minor and undervalued applications. In the last few years, a considerable amount of scientific knowledge about extraction, composition, bioactivities and health benefits of peanut skin phenolics has been generated. The present review was focused on four main aspects: a) extraction methods and technologies for obtaining peanut skin phenolics with an emphasis on green-solvent extraction processes; b) variations in chemical profiles including those due to genetic variability, extraction methodologies and process-related issues; c) bioactive properties, especially antioxidant activities in food and biological systems; d) update of promising food applications. The revision was also aimed at identifying areas where knowledge is insufficient and to set priorities for further research.
Collapse
Affiliation(s)
- Romina Bodoira
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Universidad Nacional de Córdoba (UNC), Argentina
| | - M Cecilia Cittadini
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Alexis Velez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Yanina Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB - CONICET), Universidad Nacional de Villa María (UNVM), Argentina
| | - Mariana Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB - CONICET), Universidad Nacional de Villa María (UNVM), Argentina
| | - Marcela Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina.
| |
Collapse
|
9
|
Supercritical CO 2-ethanol extraction of oil from green coffee beans: optimization conditions and bioactive compound identification. Journal of Food Science and Technology 2021; 58:4514-4523. [PMID: 34629515 DOI: 10.1007/s13197-020-04933-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
In this research, a supercritical CO2-ethanol extraction was optimized to obtain a green coffee oil rich in bioactive compounds. A face-centered central composite design was used to evaluate the effect of temperature (50-70 °C), extraction pressure (15.0-30.0 MPa), and cosolvent content (5-20%) on the extraction yield and total phenolic compound content of green coffee supercritical extract (GCSE). The experimental data were fitted to a second-order polynomial model. According to the statistical analyses, the lack of fit was not significant for either mathematical model. From the response surface plots, the extraction pressure and cosolvent content significantly impacted the extraction yield, while the total phenolic compound content was impacted by temperature and cosolvent content. The optimal conditions were a 20% cosolvent content, a pressure of 30 MPa, and a temperature of 62 °C, which predicted an extraction yield of 7.7% with a total phenol content of 5.4 mg gallic acid equivalent g GCSE-1. The bioactive compounds included 5-caffeoylquinic acid (11.53-17.91 mg g GCSE-1), caffeine (44.76-79.51 mg g GCSE-1), linoleic acid (41.47-41.58%), and palmitic acid (36.07-36.18%). Our results showed that GCSE has the outstanding chemical quality and antioxidant potential, suggesting that GCSE can be used as a functional ingredient.
Collapse
|