1
|
Mahmud N, Islam J, Oyom W, Adrah K, Adegoke SC, Tahergorabi R. A review of different frying oils and oleogels as alternative frying media for fat-uptake reduction in deep-fat fried foods. Heliyon 2023; 9:e21500. [PMID: 38027829 PMCID: PMC10660127 DOI: 10.1016/j.heliyon.2023.e21500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This review aims to examine the potential of oleogels as a frying medium to decrease oil absorption during deep-frying and enhance the nutritional and energy content of foods. By investigating the factors influencing oil incorporation during deep-frying and examining the application of oleogels in this process, we seek to provide insights into using oleogels as an alternative to traditional cooking oils. Scope Deep-frying, a widely used cooking method, leads to the retention of large amounts of oil in fried food, which has been associated with health concerns. To address this issue, researchers have investigated various methods to minimize oil absorption during frying. One promising approach is the use of oleogels, which are thermo-reversible, three-dimensional gel networks formed by entrapment of bulk oil with a low concentration (<10% of weight) of solid lipid materials known as oleogelators. This review will focus on the following aspects: a) an overview of deep-fried foods, b) factors influencing oil uptake and underlying mechanisms for oil absorption during deep-frying, c) the characterization and application of different frying oils and their oleogels in deep-fried foods, d) components of the oleogel system for deep-frying, and e) the health impact, oxidative stability, and sensory acceptability of using oleogels in deep-frying. Key findings The review highlights the potential of oleogels as a promising alternative frying medium to reduce fat absorption in deep-fried foods. Considering the factors influencing oil uptake during deep-frying, as well as exploring the properties and applications of different frying oils and their oleogels, can result in improved product qualities and heightened consumer acceptance. Moreover, oleogels offer the advantage of lower fat content in fried products, addressing health concerns associated with traditional deep-frying methods. The capacity to enhance the nutritional and energy profile of foods while preserving sensory qualities and oxidative stability positions oleogels as a promising choice for upcoming food processing applications.
Collapse
Affiliation(s)
- Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
- Department of Food Science and Technology, University of Georgia, Athens, GA, 30602, USA
| | - William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Kelvin Adrah
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | | | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
2
|
Botella-Martínez C, Pérez-Álvarez JÁ, Sayas-Barberá E, Navarro Rodríguez de Vera C, Fernández-López J, Viuda-Martos M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023; 13:biom13050778. [PMID: 37238648 DOI: 10.3390/biom13050778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present day, it has been widely established that a high intake of animal fat that contains a high content of saturated fatty acids may cause several life-threatening diseases, including obesity, diabetes-type 2, cardiovascular diseases, as well as several types of cancer. In this context, a great number of health organizations and government agencies have launched campaigns to reduce the saturated fat content in foods, which has prompted the food industry, which is no stranger to this problem, to start working to develop foods with a lower fat content or with a different fatty acid profile. Nevertheless, this is not an easy task due to the fact that saturated fat plays a very important role in food processing and in the sensorial perception of foods. Actually, the best way to replace saturated fat is with the use of structured vegetable or marine oils. The main strategies for structuring oils include pre-emulsification, microencapsulation, the development of gelled emulsions, and the development of oleogels. This review will examine the current literature on the different (i) healthier oils and (ii) strategies that will be potentially used by the food industry to reduce or replace the fat content in several food products.
Collapse
Affiliation(s)
- Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Casilda Navarro Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
3
|
Prodić I, Krstić Ristivojević M, Smiljanić K. Antioxidant Properties of Protein-Rich Plant Foods in Gastrointestinal Digestion—Peanuts as Our Antioxidant Friend or Foe in Allergies. Antioxidants (Basel) 2023; 12:antiox12040886. [PMID: 37107261 PMCID: PMC10135473 DOI: 10.3390/antiox12040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Thermally processed peanuts are ideal plant models for studying the relationship between allergenicity and antioxidant capacity of protein-rich foods, besides lipids, carbohydrates and phytochemicals. Peanut is highly praised in the human diet; however, it is rich in allergens (>75% of total proteins). One-third of peanut allergens belong to the products of genes responsible for the defence of plants against stress conditions. The proximate composition of major peanut macromolecules and polyphenols is reviewed, focusing on the identity and relative abundance of all peanut proteins derived from recent proteomic studies. The importance of thermal processing, gastrointestinal digestion (performed by INFOGEST protocol) and their influence on allergenicity and antioxidant properties of protein-rich plant food matrices is elaborated. Antioxidant properties of bioactive peptides from nuts were also considered. Moreover, there are no studies dealing simultaneously with the antioxidant and allergenic properties of protein- and polyphenol-rich foods, considering all the molecules that can significantly contribute to the antioxidant capacity during and after gastrointestinal digestion. In summary, proteins and carbohydrates are underappreciated sources of antioxidant power released during the gastrointestinal digestion of protein-rich plant foods, and it is crucial to decipher their antioxidant contribution in addition to polyphenols and vitamins before and after gastrointestinal digestion.
Collapse
Affiliation(s)
- Ivana Prodić
- Innovative Centre of the Faculty of Chemistry in Belgrade Ltd., University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Krstić Ristivojević
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| | - Katarina Smiljanić
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| |
Collapse
|
4
|
A Short Review on Catalyst, Feedstock, Modernised Process, Current State and Challenges on Biodiesel Production. Catalysts 2021. [DOI: 10.3390/catal11111261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biodiesel, comprising mono alkyl fatty acid esters or methyl ethyl esters, is an encouraging option to fossil fuels or diesel produced from petroleum; it has comparable characteristics and its use has the potential to diminish carbon dioxide production and greenhouse gas emissions. Manufactured from recyclable and sustainable feedstocks, e.g., oils originating from vegetation, biodiesel has biodegradable properties and has no toxic impact on ecosystems. The evolution of biodiesel has been precipitated by the continuing environmental damage created by the deployment of fossil fuels. Biodiesel is predominantly synthesised via transesterification and esterification procedures. These involve a number of key constituents, i.e., the feedstock and catalytic agent, the proportion of methanol to oil, the circumstances of the reaction and the product segregation and purification processes. Elements that influence the yield and standard of the obtained biodiesel encompass the form and quantity of the feedstock and reaction catalyst, the proportion of alcohol to feedstock, the temperature of the reaction, and its duration. Contemporary research has evaluated the output of biodiesel reactors in terms of energy production and timely biodiesel manufacture. In order to synthesise biodiesel for industrial use efficaciously, it is essential to acknowledge the technological advances that have significant potential in this sector. The current paper therefore offers a review of contemporary progress, feedstock categorisation, and catalytic agents for the manufacture of biodiesel and production reactors, together with modernised processing techniques. The production reactor, form of catalyst, methods of synthesis, and feedstock standards are additionally subjects of discourse so as to detail a comprehensive setting pertaining to the chemical process. Numerous studies are ongoing in order to develop increasingly efficacious techniques for biodiesel manufacture; these acknowledge the use of solid catalytic agents and non-catalytic supercritical events. This review appraises the contemporary situation with respect to biodiesel production in a range of contexts. The spectrum of techniques for the efficacious manufacture of biodiesel encompasses production catalysed by homogeneous or heterogeneous enzymes or promoted by microwave or ultrasonic technologies. A description of the difficulties to be surmounted going forward in the sector is presented.
Collapse
|
5
|
USMAN M, PATIL PJ, MANZOOR MF, BILAL M, AHMED S, MURTAZA MA, SHAH H, NAWAZ N, AMJAD S, ABRAR M. Dough rheology and the impact of zinc sulfate on the quality of cookies. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.34220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Haroon SHAH
- Beijing Technology and Business University, China
| | - Nida NAWAZ
- Beijing Technology and Business University, China
| | - Sohail AMJAD
- Beijing Technology and Business University, China
| | | |
Collapse
|