1
|
Xia X, Yang X, Zhu Y, Sun Y, Zhu X. Effect and mechanism of freezing on the quality and structure of soymilk gel induced by different salt ions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5284-5295. [PMID: 38308594 DOI: 10.1002/jsfa.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The increasing attention toward frozen soy-based foods has sparked interest. Variations exist in the quality and structure of soymilk gels induced by different salt ions, leading to diverse changes post-freezing. This study compared and analyzed the effects of calcium chloride (CC), magnesium chloride (MC) and calcium sulfate (CS) on the quality characteristics and protein structure changes of soymilk gels (CC-S, MC-S and CS-S) before and after freezing, and clarified the mechanisms of freezing on soymilk gel. RESULTS The formation rate of soymilk gel is influenced by the type of salt ions. In comparison to CS and MC, soymilk gel induced by CC exhibited the fastest formation rate, highest gel hardness, lowest moisture content, and smaller gel pores. However, freezing treatment deteriorated the quality of soymilk gel induced by different salt ions, leading to a decline in textural properties (hardness and chewiness). Among these, the textual state of CC-induced soymilk gel remained optimal, exhibiting the least apparent damage and minimal cooking loss. Freezing treatments prompt a transition of soymilk gel secondary structure from β-turns to β-sheets, disrupting the protein's tertiary structure. Furthermore, freezing treatments also fostered the crosslinking between soymilk gel protein, increasing the content of disulfide bonds. CONCLUSION The quality of frozen soymilk gel is influenced by the rate of gel formation induced by salt ions. After freezing, soymilk gel with faster gelation rates exhibited a greater tendency for the transformation of protein-water interactions into protein-protein interactions. They showed a higher degree of disulfide bond formation, resulting in a more tightly knit and firm frozen gel network structure with denser and more uniformly distributed pores. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyu Xia
- College of Food Engineering, Harbin University of Commerce, Harbin, China
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ying Sun
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
2
|
Tang H, Chen J, Liu B, Tang R, Li H, Li X, Zou L, Shi Q. Influence of dextrans on the textural, rheological, and microstructural properties of acid-induced faba bean protein gels. Food Chem X 2024; 21:101184. [PMID: 38357369 PMCID: PMC10864197 DOI: 10.1016/j.fochx.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Dextrans (DXs) are a group of natural polysaccharides with different branching patterns. Previous studies examining the effects of DXs on plant protein gels have only focused on α-(1 → 3)-branched DXs. Here, we compared the effects of α-(1 → 3)-branched DX L12 with those of two α-(1 → 2)-branched DXs on the properties of glucono-δ-lactone-induced faba bean protein isolate (FPI) gels. DX L12 showed stronger effects in decreasing gel hardness and enhancing gel viscoelasticity than the other two DXs. Moreover, DX L12 decreased the water-holding capacity of FPI gels, whereas the other DXs enhanced it. Microstructural analysis revealed that DX addition promoted phase separation during gel formation. However, FPI/L12 gels exhibited greater phase separation than the other two gels and contained larger void spaces. These differences could be attributed to the varying water adsorption and self-association properties of the DXs. These findings could guide the application of DX in the tailored preparation of plant protein gels.
Collapse
Affiliation(s)
- Huihua Tang
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - Junfei Chen
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - Biqin Liu
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - Rong Tang
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650100, China
| | - Xinyi Li
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - Ling Zou
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
| | - Qiao Shi
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| |
Collapse
|
3
|
Wang Y, Tu X, Shi L, Yang H. Quality characteristics of silver carp surimi gels as affected by okara. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2153863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yudong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqin Tu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Aquatic Product Engineering and Technology Research Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
4
|
Joo KH, Kerr WL, Cavender GA. The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu. Foods 2023; 12:3004. [PMID: 37628003 PMCID: PMC10453527 DOI: 10.3390/foods12163004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Okara, the solid byproduct of soymilk production, poses a sustainability concern, despite being rich in fiber and other healthful compounds. In this study, the physical properties of tofu made from soymilk fortified with differing levels of okara-either whole or fine (<180 µm)-and made with the traditional coagulant nigari were examined. The yield increased linearly with the okara concentration with values of 18.2-29.5% compared to 14.5% for the control. The initial moisture in the fortified samples was higher than the control (79.69-82.78% versus 76.78%), and both the expressible moisture and total moisture after compression were also greater in the fortified samples. With a few exceptions, the texture parameters did not differ between samples. Dynamic rheology showed that all samples had G' > G″. The storage moduli increased at different rates during each gelling step, with G' before and after gelling increasing with the fortification level, and was greater for the samples with fine particles than with whole particles. Consumer sensory panels using the hedonic scale showed traditional tofu had a slightly higher acceptability, but the panelists indicated they would be more willing to purchase okara-fortified tofu because of the health and sustainability benefits it might have. Thus, tofu could be produced with added okara with predictable but not profound changes in its physical properties.
Collapse
Affiliation(s)
- Kay Hyun Joo
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA; (K.H.J.); (W.L.K.)
| | - William L. Kerr
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA; (K.H.J.); (W.L.K.)
| | - George A. Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Yang J, Zhu B, Dou J, Li X, Tian T, Tong X, Wang H, Huang Y, Li Y, Qi B, Jiang L. Structural characterization of soy protein hydrolysates and their transglutaminase-induced gelation properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Li L, He H, Wu D, Lin D, Qin W, Meng D, Yang R, Zhang Q. Rheological and textural properties of acid-induced soybean protein isolate gel in the presence of soybean protein isolate hydrolysates or their glycosylated products. Food Chem 2021; 360:129991. [PMID: 33965712 DOI: 10.1016/j.foodchem.2021.129991] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
Enzymatic hydrolysis and glycosylation were successively applied to modify soybean protein isolate (SPI) and rheological and textural properties of acid-induced SPI gel added with the obtained SPI hydrolysates and their glycosylated products were then investigated. The incorporation of SPI hydrolysates decreased the elastic modulus (G') and hardness of SPI gel, which might be related to the random aggregation between SPI hydrolysates and native SPI molecules via hydrophobic interactions. In addition, as the molecular weight of SPI hydrolysates decreased, the reduction in G' and hardness became more significant. Although glycosylation of SPI hydrolysates weakened the adverse effects of hydrolysates on the SPI gel formation to some extent, the glycosylated SPI hydrolysates were still unable to improve the gel quality compared with the control. However, results of this research may provide important information for understanding the influencing mechanism of SPI hydrolysates and their glycosylated products on the formation of SPI gel.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Hui He
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Daize Wu
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China.
| |
Collapse
|