1
|
Li C, Gao H, Yin C, Liu M, Fan X, Shi D, Yao F, Li J, Liu Q, Wen J, Qiu J, Hu G. Physicochemical, antioxidant, gastrointestinal digestion and probiotic growth promoting properties of water and alkali extracted polysaccharides from Schizophyllum commune. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3787-3797. [PMID: 39907041 DOI: 10.1002/jsfa.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Schizophyllum commune is a traditional edible and medicinal mushroom that has been successfully artificially cultivated in China. Polysaccharides from S. commune have attracted much attention because of their bioactivity. The present study aimed to investigate the physicochemical, gastrointestinal digestion and probiotic growth promoting properties of water extracted polysaccharides (WSP) and alkali extracted polysaccharides (WSP) from S. commune. RESULTS The extraction rates and the total sugar contents of WSP and ASP were 11.97% and 14.36% and 57.71 g kg-1 and 52.34 g kg-1, respectively. The main monosaccharides of WSP are glucose and mannose, whereas glucose, mannose and galacturonic acid are the main monosaccharides of ASP. Although the molecular weight of WSP is greater than that of ASP, both WSP and ASP show the typical absorption peaks of polysaccharides and a triple helix structure. WSP shows a coarse granular microstructure, whereas ASP presents a dense porous microstructure. Moreover, WSP shows typical Newtonian fluid behavior, whereas ASP exhibits typical non-Newtonian fluid behavior. WSP presents better thermal stability and antioxidant properties than that of ASP. Both WSP and ASP have good hydrolysis resistance in vitro simulated digestion, but ASP shows better hydrolysis resistance. Both WSP and ASP can promote the growth of probiotic, but the promoting growth effect depends on the strain of the probiotic. CONCLUSION In sum, WSP shows better physicochemical properties, but ASP has more potential to be an excellent prebiotic. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Hong Gao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Research Center of Under-Forest Economy in Hubei Province, Wuhan, China
| | - Chaomin Yin
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mengfan Liu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiuzhi Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fen Yao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jiangtao Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qiongxiang Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Wen
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Jianhui Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
2
|
Xu L, Zeng X, Liu Y, Wu Z, Zheng X, Zhang X. Effect of Dendrobium officinale polysaccharides on central nervous system disease: Based on gut microbiota. Int J Biol Macromol 2023; 240:124440. [PMID: 37062382 DOI: 10.1016/j.ijbiomac.2023.124440] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Dendrobium officinale has anti-inflammatory effects and is one of the well-known functional foods. Dendrobium officinale polysaccharide (DOP) can reduce intestinal barrier disruption and excessive inflammatory response by regulating intestinal bacterial homeostasis as well as short-chain fatty acid levels. It can also inhibit the activation of astrocytes and microglia, further realizing the protective effect on neuronal apoptosis and apoptosis, thus exerting a significant alleviating effect on neurological diseases. There is now evidence that bidirectional communication between the central nervous system and the gastrointestinal tract may influence human neurology, cognition and behavior via the gut-brain axis. In this review, we review the structural characterization, bioactivity and possible bioactive mechanisms of DOP, so as to elucidate the advantages of DOP's action on CNS diseases, with the aim of providing new perspectives for its drug and functional food development as well as clinical applications.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaoxiong Zeng
- Department of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, PR China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Chen H, Shi X, Cen L, Zhang L, Dai Y, Qiu S, Zeng X, Wei C. Effect of Yeast Fermentation on the Physicochemical Properties and Bioactivities of Polysaccharides of Dendrobium officinale. Foods 2022; 12:foods12010150. [PMID: 36613366 PMCID: PMC9818654 DOI: 10.3390/foods12010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Fermentation is an effective method for enhancing the biological activity of polysaccharides, but research on its effect on Dendrobium officinal polysaccharides is rare. In this study, the effects of mono-fermentation (Saccharomyces cerevisiae FBKL2.8022, Sc; Wickerhamomyces anomalous FBKL2.8023, Wa) and co-fermentation (Sc+Wa) on the physicochemical properties and bioactivity of Dendrobium officinal polysaccharides were investigated. Meanwhile, the polysaccharide (DOP) obtained from Dendrobium officinale was used as a control. Four homogeneous polysaccharides were obtained by isolation and purification and named DOSCP, DOWAP, DOSWP, and DOP. The results showed that DOSCP, DOWAP, DOSWP, and DOP consisted of mannose and glucose with ratios of 3.31:1, 5.56:1, 2.40:1, and 3.29:1, respectively. The molecular weights (Mws) of the four polysaccharides were 25.73 kDa, 15.01 kDa, 17.67 kDa, and 1268.21 kDa. The antioxidant activity of DOSCP, DOWAP, and DOSWP was better than that of DOP. Additionally, all four polysaccharides were able to reduce the inflammatory response of LPS-induced RAW 264.7 macrophages in the mice without a significant difference. Yeast fermentation significantly reduced the molecular weight and improved the antioxidant activity of Dendrobium officinale polysaccharides, indicating a potential way to improve its antioxidant activity.
Collapse
Affiliation(s)
- Hang Chen
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueqin Shi
- Sichuan Langjiu Co., Ltd., Luzhou 645423, China
| | - Lanyan Cen
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lin Zhang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiangyong Zeng
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaoyang Wei
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-851-88292178
| |
Collapse
|
4
|
Xu X, Zhang C, Wang N, Xu Y, Tang G, Xu L, Feng Y. Bioactivities and Mechanism of Actions of Dendrobium officinale: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6293355. [PMID: 36160715 PMCID: PMC9507758 DOI: 10.1155/2022/6293355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Dendrobium officinale has a long history of being consumed as a functional food and medicinal herb for preventing and managing diseases. The phytochemical studies revealed that Dendrobium officinale contained abundant bioactive compounds, such as bibenzyls, polysaccharides, flavonoids, and alkaloids. The experimental studies showed that Dendrobium officinale and its bioactive compounds exerted multiple biological properties like antioxidant, anti-inflammatory, and immune-regulatory activities and showed various health benefits like anticancer, antidiabetes, cardiovascular protective, gastrointestinal modulatory, hepatoprotective, lung protective, and neuroprotective effects. In this review, we summarize the phytochemical studies, bioactivities, and the mechanism of actions of Dendrobium officinale, and the safety and current challenges are also discussed, which might provide new perspectives for its development of drug and functional food as well as clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
5
|
He C, Zhang R, Jia X, Dong L, Ma Q, Zhao D, Sun Z, Zhang M, Huang F. Variation in characterization and probiotic activities of polysaccharides from litchi pulp fermented for different times. Front Nutr 2022; 9:993828. [PMID: 36091223 PMCID: PMC9449517 DOI: 10.3389/fnut.2022.993828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
This study investigated the chemical structures and probiotic potential of different polysaccharides (LPs) extracted from the litchi pulp that fermented with Lactobacillus fermentum for different times (i.e., 0–72 h corresponding to LP-0 through LP-72, respectively). Fermentation times affected the yields, total sugar contents, uronic acid contents, molecular weights, and monosaccharide compositions of LPs. The LPs yields and uronic acid contents exhibited irregular trends in association with fermentation time, while total sugar contents decreased, and the molecular weights increased. Particularly, LP-6 contained the highest extraction yields (2.67%), lowest uronic acid contents, and smallest average Mw (104 kDa) (p < 0.05). Moreover, analysis of the monosaccharide composition in the fermented LPs indicated that the proportions of glucose decreased, while arabinose and galacturonic acid proportions increased relative to unfermented LP-0. Further, LP-6 demonstrated the highest growth for Bifidobacterium compared to LP-0, while the other fermentation time led to comparable or worse probiotic promoting activities. These results suggest that lactic acid bacteria fermentation alters the physicochemical properties of litchi polysaccharides, such that suitable fermentation time can enhance their probiotic activities.
Collapse
Affiliation(s)
- Chunmei He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruifen Zhang
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xuchao Jia
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lihong Dong
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Qin Ma
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dong Zhao
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- *Correspondence: Mingwei Zhang,
| | - Fei Huang
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Fei Huang,
| |
Collapse
|
6
|
Li X, Wang X, Wang Y, Liu X, Ren X, Dong Y, Ma J, Song R, Wei J, Yu A, Fan Q, Yao J, Shan D, Zhang Y, Wei S, She G. A Systematic Review on Polysaccharides from Dendrobium Genus: Recent Advances in the Preparation, Structural Characterization, Bioactive Molecular Mechanisms, and Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:471-509. [PMID: 35168475 DOI: 10.1142/s0192415x22500185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendrobium polysaccharides (DPSs) have aroused people's increasing attention in recent years as a result of their outstanding edible and medicinal values and non-toxic property. This review systematically summarized recent progress in the different preparation techniques, structural characteristics, modification, various pharmacological activities and molecular mechanisms, structure-activity relationships, and current industrial applications in the medicinal, food, and cosmetics fields of DPSs. Additionally, some recommendations for future investigations were provided. A variety of methods were applied for the extraction and purification of DPSs. They possessed primary structures (e.g., glucomannan, rhamnogalacturonan I type pectin, heteroxylan, and galactoglucan) and conformational structures (e.g., random coil, rod, globular, and a slight triple-helical). And different molecular weights, monosaccharide compositions, linkage types, and modifications could largely affect DPSs' bioactivities (e.g., immunomodulatory, anti-diabetic, hepatoprotective, gastrointestinal protective, antitumor, anti-inflammatory, and anti-oxidant activities). It was worth mentioning that DPSs were significant pharmaceutical remedies and therapeutic supplements especially due to their strong immunity enhancement abilities. We hope that this review will lay a solid foundation for further development and applications of Dendrobium polysaccharides.
Collapse
Affiliation(s)
- Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Yanfei Zhang
- Shuangjiang Xingyun Biological Technology Co., Ltd, Shenzhen, Guangdong 518000, P. R. China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| |
Collapse
|