1
|
Ukwatta RH, Yuan R, Ma Y, Xiong X, Hu Y, Li C, Xue F. Effect of lipid addition on the physiochemical, structural, and photoactive antibacterial properties of cornstarch-chlorophyllin composite film. Food Res Int 2025; 202:115699. [PMID: 39967156 DOI: 10.1016/j.foodres.2025.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/15/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
The study aimed to prepare cornstarch-chlorophyllin (CS-Chl) composite films with coconut oil (CO), oregano essential oil (OEO), and beeswax (BW) at percentages of 0.5 %, 1.0 % and 1.5 %, to address the key limitation of the hydrophilic nature of the CS-Chl matrix, and the physiochemical, structural and photoactive antibacterial properties of the films were evaluated. The moisture content, water solubility, swelling ability, and water vapor permeability were significantly reduced in all COx/OEOx/BWx samples, with average values of 12.58 %, 15.41 %, 29.30 %, and 1.78 × 10-10 gm-1s-1Pa-1, respectively. Regarding mechanical properties, the tensile strength (TS) in COx and BWx films increased, while the elongation at break (EAB) decreased with the increasing CO and BW percentages. However, in OEOx films, initially, the TS was increased, then reduced with the rising OEO percentage. The FTIR spectrum indicated better CO, OEO, and BW molecule integration with the CS matrix and Chl molecules. XRD spectrum showed low crystallinity, while SEM images visualized rough surfaces with heterogenous structures in the cross-section. Despite the similarity in reactive oxygen species (ROS) production in COx/OEOx/BWx films, shrimp wrapped in these films were safe for consumption after 5 days. The results highlighted the impact of lipid concentration and ROS generation, confirming that CS-Chl films with COx/OEOx/BWx offer enhanced antibacterial properties compared to polyethylene (PE) films, positioning them as innovative solutions for food packaging in practical applications.
Collapse
Affiliation(s)
- Ruchika Hansanie Ukwatta
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816 PR China
| | - Ruhuan Yuan
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816 PR China
| | - Yan Ma
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816 PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816 PR China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816 PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816 PR China.
| | - Feng Xue
- Jiangsu Key Laboratory of Medicinal Substance and Utilization of Fresh Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023 PR China.
| |
Collapse
|
2
|
Das K, Sharma S, Kumar S, Mahajan S, Banerjee SK, Katiyar V. Chitosan nanoparticles and neem essential oil functionalized pullulan/gum arabic active edible biocomposites for fresh-cut guava preservation. Int J Biol Macromol 2024; 283:136936. [PMID: 39505172 DOI: 10.1016/j.ijbiomac.2024.136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
The study demonstrates the preparation of active edible biocomposites using Pullulan (PUL) and Gum Arabic (GA), functionalized with Chitosan Nanoparticles (NCS) and Neem Essential Oil (NEO). These biocomposites addressed the issues of high hydrophilicity and poor barrier properties in packaging. The effects of varying NCS concentrations (1 %, 2 %, and 3 %) on various film properties were studied, while keeping PUL, GA, and NEO concentrations constant. The biocomposite containing NEO and 3 % NCS (PUL/GA/NCS3/NEO), significantly improved surface properties, transforming it from hydrophilic (water contact angle 55.49 ± 2.31°) to hydrophobic (115.01 ± 1.86°). Additionally, tensile strength increased by ∼12.77 MPa, elongation at break by ∼6.26 %, thermal stability (Toffset) by ∼22.49 °C, and water vapour barrier by ∼45.95 %, alongside enhanced UV-shielding, antimicrobial and antioxidant properties. The EDX analysis confirmed the biocomposite safety, with 55.7 % carbon (C), 3.6 % nitrogen (N), and 40.8 % oxygen (O). Moreover, in vitro biocompatibility tests on Human Embryonic Kidney (HEK-293) cells indicated non-cytotoxicity, with 86.82 ± 2.28 % viability after 72 h. Furthermore, the practical application of PUL/GA/NCS3/NEO solution was tested as an edible coating material for fresh-cut guava preservation. The coated guava better maintained storage quality parameters in terms of colour, weight loss, firmness, microbiological shelf-life and antioxidant activity, under both ambient and refrigerated conditions.
Collapse
Affiliation(s)
- Kuhelika Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Shikha Sharma
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sonu Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Shriram Mahajan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Shi C, Jia L, Tao H, Hu W, Li C, Aziz T, Al-Asmari F, Sameeh MY, Cui H, Lin L. Fortification of cassava starch edible films with Litsea cubeba essential oil for chicken meat preservation. Int J Biol Macromol 2024; 276:133920. [PMID: 39029840 DOI: 10.1016/j.ijbiomac.2024.133920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Chicken meat is highly perishable and mainly preserved by plastic packaging materials, whereas their widely used have increased environmental burden and threatened human health. Bioactive packaging materials fabricated by biopolymers are promising alternatives for meat preservation. Herein, cassava starch (CS)/sodium carboxymethyl cellulose (CMC) edible films fortified with Litsea cubeba essential oil (LC-EO) were fabricated and characterized. Results showed the textural, mechanical and barrier properties of the CS/CMC edible films were significantly improved after incorporating with LC-EO. Moreover, the composite edible films exhibited potent antibacterial properties, biodegradability, hydrophobicity, and thermal stability. Whereas the water solubility and moisture content was reduced up to 29.68 % and 24.37 %, respectively. The release behavior of LC-EO suggested the suitability of the composite edible films for acidic foods. Comparing with the control group, the pH values of the meat samples packaged with CS/CMC/LCEO-4 mg/mL edible films maintained at around 6.7, and weight loss rate was 15 %. The color and texture changes, and the lipid oxidation of the meat samples with CS/CMC/LCEO-4 mg/mL packaging were also markedly delayed. The microbial growth was retarded at 6.35 log CFU/g after storage for 10 days. These findings suggested the CS/CMC/LCEO-4 mg/mL edible films had great potential for chicken meat preservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Clinical, Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China; Department of Clinical, Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
| |
Collapse
|
4
|
Criollo-Feijoo J, Salas-Gomez V, Cornejo F, Auras R, Salazar R. Cassava bagasse starch and oregano essential oil as a potential active food packaging material: A physicochemical, thermal, mechanical, antioxidant, and antimicrobial study. Heliyon 2024; 10:e36150. [PMID: 39253124 PMCID: PMC11382050 DOI: 10.1016/j.heliyon.2024.e36150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
This research evaluates the use of cassava bagasse starch and oregano essential oil (OEO) in an active film. For comparison, films of cassava starch (CS) and cassava bagasse starch (BS) were prepared with OEO at 1, 2, and 3 %. Physical, thermal, mechanical, antioxidant, and antimicrobial properties were determined. BS films presented higher thickness, WVP, ΔE, modulus of elasticity, and maximum stress, but lower strain at break compared to CS films. Adding OEO into the films increased their thickness, moisture, solubility, WVP and strain at break. However, maximum stress, modulus of elasticity, and T dmax decreased. The CS films added with 3 % of OEO showed higher WVP (6.32 × 10-14 kg m/m2.s.Pa), intermediate solubility of 39 % and low maximum stress (0.19 MPa) while the BS film with 3 % of OEO presented 5.73 × 10-14 kg m/m2.s.Pa, 30 % and 0.39 MPa, respectively. The increase from 1 % to 3 % of OEO increased the total phenolic compound content and antioxidant activity of the films by 1.3-fold and 3.7-fold, respectively. The incorporation of 3 % OEO in the films inhibited the growth of S. aureus and E. coli. Therefore, BS and OEO films offer a promising solution as biodegradable active food packaging, providing a more sustainable alternative to traditional non-biodegradable plastic packaging.
Collapse
Affiliation(s)
- Juliana Criollo-Feijoo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Verónica Salas-Gomez
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Fabiola Cornejo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI, 48824-1223, USA
| | - Rómulo Salazar
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| |
Collapse
|
5
|
Schutz GF, Alves RMV, Delarmelina C, Duarte MCT, Vieira RP. Limonene and its derived oligomer as bioactive additives in starch/coffee husks biocomposites for food packaging applications. Int J Biol Macromol 2024; 260:129482. [PMID: 38232875 DOI: 10.1016/j.ijbiomac.2024.129482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
In this study, antioxidant, and antimicrobial starch-based biocomposite films reinforced with coffee husks (S/CH) were developed by incorporating either limonene (LM) (S/CH/LM) or its oligomer derivative, poly(limonene) (PLM) (S/CH/PLM), at different concentrations (5-10 % w/w of starch). Through a comprehensive assessment of film properties, morphology, and structure, a comparative analysis between the two additives was proposed. Scanning electron microscopy (SEM) revealed some defects throughout the polymer matrix after additive incorporation. The tensile strength (TS) and modulus of elasticity (ME) showed a decrease upon the inclusion of both LM and PLM, while the elongation at break (E) increased. Notably, PLM exhibited outstanding antioxidant capacity, enhancing the films by 108 % over control samples. Additionally, at just 5 % concentration, PLM effectively inhibited the growth of Escherichia coli ATCC 11775 (35.33 ± 2.52 mm) and demonstrated an impressive UV-Vis barrier, comparable to the highest amount of LM incorporated. Therefore, this research highlights the potential of coffee husk-reinforced starch biocomposites with limonene-derived additives as a promising solution for food packaging applications. The comparative analysis sheds light on the advantages of using the PLM in terms of antioxidant and antimicrobial properties, contributing to the advancement of active packaging technologies.
Collapse
Affiliation(s)
- Guilherme Frey Schutz
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| | - Rosa Maria Vercelino Alves
- Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Embalagem (CETEA), Campinas, São Paulo, Brazil
| | - Camila Delarmelina
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Paulínia, São Paulo, Brazil
| | - Marta Cristina Teixeira Duarte
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Paulínia, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
7
|
Li XL, Shen Y, Hu F, Zhang XX, Thakur K, Rengasamy KRR, Khan MR, Busquets R, Wei ZJ. Fortification of polysaccharide-based packaging films and coatings with essential oils: A review of their preparation and use in meat preservation. Int J Biol Macromol 2023; 242:124767. [PMID: 37164134 DOI: 10.1016/j.ijbiomac.2023.124767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
As the demand for botanical food additives and eco-friendly food packaging materials grows, the use of essential oils, edible biodegradable films and coatings are becoming more popular in packaging. In this review, we discussed the recent research trends in the use of natural essential oils, as well as polysaccharide-based coatings and films: from the composition of the substrates to preparing formulations for the production of film-forming technologies. Our review emphasized the functional properties of polysaccharide-based edible films that contain plant essential oils. The interactions between essential oils and other ingredients in edible films and coatings including polysaccharides, lipids, and proteins were discussed along with effects on film physical properties, essential oil release, their active role in meat preservation. We presented the opportunities and challenges related to edible films and coatings including essential oils to increase their industrial value and inform the development of edible biodegradable packaging, bio-based functional materials, and innovative food preservation technologies.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, Surrey, England, the United Kingdom of Great Britain and Northern Ireland
| | - Yi Shen
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fei Hu
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rosa Busquets
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
8
|
Venkatachalam K, Charoenphun N. Influence of Pomelo ( Citrus maxima) Pericarp Essential Oil on the Physicochemical Properties of HomChaiya Rice ( Oryza sativa L. cv. HomChaiya) Flour-Derived Edible Films. MEMBRANES 2023; 13:435. [PMID: 37103861 PMCID: PMC10143942 DOI: 10.3390/membranes13040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The food industry is increasingly interested in using active edible packaging to address environmental problems caused by conventional synthetic polymers, such as pollution and degradation. The present study took advantage of this opportunity to develop active edible packaging using Hom-Chaiya rice flour (RF), incorporating pomelo pericarp essential oil (PEO) at varying concentrations (1-3%). Films without PEO were used as controls. Various physicochemical parameters, structural and morphological observations were examined in the tested films. Overall, the results showed that the addition of PEO at varying concentrations significantly improved the qualities of the RF edible films, particularly the film's yellowness (b*) and total color. Furthermore, RF-PEO films with increased concentrations significantly reduced the film's roughness and relative crystallinity, while increasing opacity. The total moisture content in the films did not differ, but water activity was significantly reduced in the RF-PEO films. Water vapor barrier properties also improved in the RF-PEO films. In addition, textural properties, including tensile strength and elongation at break, were better in the RF-PEO films compared with the control. Fourier-transform infrared spectroscopy (FTIR) revealed strong bonding between the PEO and RF in the film. Morphological studies showed that the addition of PEO smoothed the film's surface, and this effect increased with concentration. Overall, the biodegradability of the tested films was effective, despite variations; however, a slight advancement in degradation was found in the control film. Lastly, the antimicrobial properties of the RF-PEO films exhibited excellent inhibitory effects against various pathogens, including Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), and Salmonella typhimurium (S. typhimurium). This study demonstrated that RF and PEO could be an effective combination for developing active edible packaging that delivers desirable functional properties and excellent biodegradability.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Surat Thani Campus, Prince of Songkla University, Makham Tia, Mueang, Surat Thani 84000, Thailand;
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Khamong, Thamai, Chanthaburi 22170, Thailand
| |
Collapse
|
9
|
Chumsri P, Panpipat W, Cheong L, Panya A, Phonsatta N, Chaijan M. Biopreservation of Refrigerated Mackerel ( Auxis thazard) Slices by Rice Starch-Based Coating Containing Polyphenol Extract from Glochidion wallichianum Leaf. Foods 2022; 11:3441. [PMID: 36360054 PMCID: PMC9655189 DOI: 10.3390/foods11213441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Both microbial decomposition and oxidative deterioration contribute to the qualitative degradation of fresh or minimally preserved fish, which negatively impacts the shelf-life of fish, especially those with dark flesh like mackerel. It is becoming more typical to use edible coatings to preserve the freshness of fish products. Herein, the effects of a rice starch (RS) based coating incorporated with dried crude, aqueous Mon-pu (Glochidion wallichianum) leaf extract (MPE) at varying concentrations (0, 0.02, 0.1, 0.5, and 1.0% w/w) on the quality characteristics of mackerel (Auxis thazard) slices during storage at 4 °C were investigated. Uncoated slices had a shelf-life of 6 days, whereas samples coated with RS and 0.5% MPE extended the shelf-life to 9 days by keeping the overall microbiological quality below the permitted level of 6 log CFU/g. The changes in thiobarbituric acid reactive substances (TBARS; <2 mg malondialdehyde equivalent/kg), propanal content, heme iron degradation, myoglobin redox instability, and surface discoloration (a* value and total color difference; ΔE) can all be delayed by this coating condition. Additionally, the RS-MPE coating can maintain the sensory quality of refrigerated mackerel slices and preserve the textural property (water holding capacity and hardness), as well as postpone the development of an off-odor as indicated by lowered contents of total volatile base-nitrogen (TVB-N; not exceeding the acceptable limit of 25 mg/100 g) and trimethylamine (TMA; not exceeding the acceptable limit of 10 mg/100 g). Therefore, a biopreservative coating made of RS and MPE, especially at 0.5%, can be employed to extend the shelf-life of refrigerated mackerel slices up to 9 days.
Collapse
Affiliation(s)
- Paramee Chumsri
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Lingzhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
11
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
12
|
Nie X, Zhang R, Cheng L, Zhu W, Li S, Chen X. Mechanisms underlying the deterioration of fish quality after harvest and methods of preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Abelti AL, Teka TA, Fikreyesus Forsido S, Tamiru M, Bultosa G, Alkhtib A, Burton E. Bio-based smart materials for fish product packaging: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alemu Lema Abelti
- Batu Fish and other Aquatic Life Research Center, Oromia Agricultural Research Institute, Batu, Ethiopia
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Tilahun A. Teka
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Sirawdink Fikreyesus Forsido
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Metekia Tamiru
- Department of Animal Science, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Geremew Bultosa
- Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Ashraf Alkhtib
- Nottingham Trent University, School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Southwell, UK, NG25 0QF
| | - Emily Burton
- Nottingham Trent University, School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Southwell, UK, NG25 0QF
| |
Collapse
|
14
|
Cui C, Ji N, Wang Y, Xiong L, Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|