1
|
Mercy DJ, Girigoswami A, Girigoswami K. Relationship between urinary tract infections and serum vitamin D level in adults and children- a literature review. Mol Biol Rep 2024; 51:955. [PMID: 39230582 DOI: 10.1007/s11033-024-09888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Over time, researchers have accumulated significant evidence indicating that vitamin D deficiency not only impacts skeletal health but also contributes to the development and progression of various diseases, including cancer, diabetes, and cardiovascular conditions. The risk of low serum 1, 25(OH)2D3 level ultimately directs the way to morbidity, the beginning of new diseases, and numerous infections. Infections are the first entity that affects those with vitamin D deficiency. The common infection is urinary tract infection (UTI), and its relationship with vitamin D deficiency or insufficiency remains controversial. This infection affects both men and women, but comparatively, women are more prone to this infection because of the short length of the urethra, which makes an easy entry for the bacteria. The low level of serum vitamin D increases the risk of UTIs in children. Recurrent UTIs are one of the major weaknesses in women; if left untreated, they progress to appallingly serious conditions like kidney dysfunction, liver damage, etc. Hence improving the vitamin D status may help to improve the immune system, thus making it more resistant to infections. In this review, we have focused on examining whether vitamin D deficiency and insufficiency are the causes of UTIs and the association between them in women and children. We have also described the connection between vitamin D deficiency and insufficiency with UTIs and additional nanotechnology- based treatment strategies.
Collapse
Affiliation(s)
- Devadass Jessy Mercy
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
2
|
Ozcelikay G, Cetinkaya A, Kaya SI, Yence M, Canavar Eroğlu PE, Unal MA, Ozkan SA. Novel Sensor Approaches of Aflatoxins Determination in Food and Beverage Samples. Crit Rev Anal Chem 2024; 54:982-1001. [PMID: 35917408 DOI: 10.1080/10408347.2022.2105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rapid quantification of toxins in food and beverage products has become a significant issue in overcoming and preventing many life-threatening diseases. Aflatoxin-contaminated food is one of the reasons for primary liver cancer and induces some tumors and cancer types. Advancements in biosensors technology have brought out different analysis methods. Therefore, the sensing performance has been improved for agricultural and beverage industries or food control processes. Nanomaterials are widely used for the enhancement of sensing performance. The enzymes, molecularly imprinted polymers (MIP), antibodies, and aptamers can be used as biorecognition elements. The transducer part of the biosensor can be selected, such as optical, electrochemical, and mass-based. This review explains the classification of major types of aflatoxins, the importance of nanomaterials, electrochemical, optical biosensors, and QCM and their applications for the determination of aflatoxins.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Kecioren, Ankara, Turkey
| | - Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | | | | | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
3
|
Bahari HR, Mousavi Khaneghah A, Eş I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr Rev Food Sci Food Saf 2024; 23:e13369. [PMID: 38767851 DOI: 10.1111/1541-4337.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.
Collapse
Affiliation(s)
- Hamid-Reza Bahari
- Center of Innovation for Green and High Technologies, Tehran, Iran
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | - Ismail Eş
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Contreras-Trigo B, Díaz-García V, Oyarzún P. A Novel Preanalytical Strategy Enabling Application of a Colorimetric Nanoaptasensor for On-Site Detection of AFB1 in Cattle Feed. SENSORS (BASEL, SWITZERLAND) 2022; 22:9280. [PMID: 36501982 PMCID: PMC9735511 DOI: 10.3390/s22239280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxin contamination of cattle feed is responsible for serious adverse effects on animal and human health. A number of approaches have been reported to determine aflatoxin B1 (AFB1) in a variety of feed samples using aptasensors. However, rapid analysis of AFB1 in these matrices remains to be addressed in light of the complexity of the preanalytical process. Herein we describe an optimization on the preanalytical stage to minimize the sample processing steps required to perform semi-quantitative colorimetric detection of AFB1 in cattle feed using a gold nanoparticle-based aptasensor (nano-aptasensor). The optical behavior of the nano-aptasensor was characterized in different organics solvents, with acetonitrile showing the least interference on the activity of the nan-aptasensor. This solvent was selected as the extractant agent for AFB1-containing feed, allowing for the first time, direct colorimetric detection from the crude extract (detection limit of 5 µg/kg). Overall, these results lend support to the application of this technology for the on-site detection of AFB1 in the dairy sector.
Collapse
|
5
|
Sun Y, Zhu G, Zhao W, Jiang Y, Wang Q, Wang Q, Rui Y, Zhang P, Gao L. Engineered Nanomaterials for Improving the Nutritional Quality of Agricultural Products: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4219. [PMID: 36500842 PMCID: PMC9736685 DOI: 10.3390/nano12234219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
To ensure food safety, the current agricultural development has put forward requirements for improving nutritional quality and reducing the harmful accumulation of agricultural chemicals. Nano-enabled sustainable agriculture and food security have been increasingly explored as a new research frontier. Nano-fertilizers show the potential to be more efficient than traditional fertilizers, reducing the amount used while ensuring plant uptake, supplying the inorganic nutrients needed by plants, and improving the process by which plants produce organic nutrients. Other agricultural uses of nanotechnology affect crop productivity and nutrient quality in addition to nano-fertilizers. This article will review the research progress of using nanomaterials to improve nutritional quality in recent years and point out the focus of future research.
Collapse
Affiliation(s)
- Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor’s Workstation of Yuhuangmiao Town, Shanghe County, Jinan 250061, China
- China Agricultural University Professor’s Workstation of Sunji Town, Shanghe County, Jinan 250061, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Sharma P, Chauhan R, Pande V, Basu T, Rajesh, Kumar A. Rapid sensing ofTilletia indica - Teliospore in wheat extractby apiezoelectric label free immunosensor. Bioelectrochemistry 2022; 147:108175. [PMID: 35749887 DOI: 10.1016/j.bioelechem.2022.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
'Tilletia indica', a fungal pathogen causes Karnal bunt disease in wheat. It has been renowned as a quarantine pest in more than 50 countries, therefore, urged a threat to wheat in the international market. To date, conventional methods employed to detect the disease involve the tentative identification of spores (teliospores) based on morphology. For effective and specific disease control, it is essential to get the specific protein of the analyte (teliospore) to target. In present study, a label-free immunosensor has been developed to detect Karnal bunt disease. A specifically synthesized anti-teliosporic monoclonal antibody (mAb) was immobilized on a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) to detect teliospore. All modified electrodes were morphologically characterized by scanning electron microscopy (SEM), atomic force microscopy(AFM), Fourier transform infra-red spectroscopy (FT-IR) techniques and analytically characterized by quartz crystal microbalance (QCM) and cyclic voltammetry (CV). The linearity range was 19 pg mL-1-10 ng mL-1, while the detection limit (LOD) was 4.4 pg mL-1 and 12.5 pg mL-1, respectively. The stability, reproducibility, and repeatability of the immunoelectrode was examined by CV, and found stable upto 18 days with negligible variation. The binding affinity (association constant (Ka)) of the developed immunoelectrode was 1.9 × 10-2 ng mL-1. The real sample has been tested in spiked wheat samples and found about 95-103 % recovery with 2.8-4.4 % relative error.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, 263136, India; Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India.
| | - Ruchika Chauhan
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Tinku Basu
- Amity Centre for Nanomedicine, Amity University Uttar Pradesh, Noida 201303, India
| | - Rajesh
- CSIR- National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India; Director Education, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India.
| |
Collapse
|
7
|
Rao T, Li J, Cai W, Wu M, Jiang J, Yang P, Zhou Y, Liao W. Fabrication of a Mesoporous Multimetallic Oxide-based Ion-Sensitive Field Effect Transistor for pH Sensing. ACS OMEGA 2021; 6:32297-32303. [PMID: 34870050 PMCID: PMC8638296 DOI: 10.1021/acsomega.1c05469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Sensitive and reliable noninvasive sensors are in demand to cope with an increasing need for robust working conditions and fast results. One of the leading potential technologies is field-effect transistor (FET)-based sensors to improve response time, sensitivity, and stability. Here, a sol-gel method fabricates an ion-sensitive field-effect transistor with a high current and output sensitivity for electrochemical sensing, solving binary device design, component regulating, and long-term stability, while maintaining the promoted sensitivity. Metal oxide-based devices with single and binary contents are fabricated and characterized for monitoring pH changes, with performance fitted to a Nernst-Poisson model. After detecting the performance, the result was compared with devices in different components and ratios to obtain excellent performance and high stability. In addition, these extended gate FETs with multimetallic oxide promise efficiency and stability optimization in terms of a flexible component design, demonstrating the feasibility of the novel sol-gel fabrication method to achieve efficient and reliable FET sensors.
Collapse
Affiliation(s)
- Tingke Rao
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jialin Li
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wen Cai
- Institute
of Medical Engineering, Department of Biophysics,
School of Basic Medical Sciences, Health Science Center, Xi’an
Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Min Wu
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Jiang
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Yang
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanliang Zhou
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wugang Liao
- College
of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|