1
|
Magain N, Miadlikowska J, Goffinet B, Goward T, Pardo-De la Hoz C, Jüriado I, Simon A, Mercado-Díaz J, Barlow T, Moncada B, Lücking R, Spielmann A, Canez L, Wang L, Nelson P, Wheeler T, Lutzoni F, Sérusiaux E. High species richness in the lichen genus Peltigera ( Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. PERSOONIA 2023; 51:1-88. [PMID: 38665978 PMCID: PMC11041898 DOI: 10.3767/persoonia.2023.51.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 04/28/2024]
Abstract
Applying molecular methods to fungi establishing lichenized associations with green algae or cyanobacteria has repeatedly revealed the existence of numerous phylogenetic taxa overlooked by classical taxonomic approaches. Here, we report taxonomical conclusions based on multiple species delimitation and validation analyses performed on an eight-locus dataset that includes world-wide representatives of the dolichorhizoid and scabrosoid clades in section Polydactylon of the genus Peltigera. Following the recommendations resulting from a consensus species delimitation approach and additional species validation analysis (BPP) performed in this study, we present a total of 25 species in the dolichorhizoid clade and nine in the scabrosoid clade, including respectively 18 and six species that are new to science and formally described. Additionally, one combination and three varieties (including two new to science) are proposed in the dolichorhizoid clade. The following 24 new species are described: P. appalachiensis, P. asiatica, P. borealis, P. borinquensis, P. chabanenkoae, P. clathrata, P. elixii, P. esslingeri, P. flabellae, P. gallowayi, P. hawaiiensis, P. holtanhartwigii, P. itatiaiae, P. hokkaidoensis, P. kukwae, P. massonii, P. mikado, P. nigriventris, P. orientalis, P. rangiferina, P. sipmanii, P. stanleyensis, P. vitikainenii and P. willdenowii; the following new varieties are introduced: P. kukwae var. phyllidiata and P. truculenta var. austroscabrosa; and the following new combination is introduced: P. hymenina var. dissecta. Each species from the dolichorhizoid and scabrosoid clades is morphologically and chemically described, illustrated, and characterised with ITS sequences. Identification keys are provided for the main biogeographic regions where species from the two clades occur. Morphological and chemical characters that are commonly used for species identification in the genus Peltigera cannot be applied to unambiguously recognise most molecularly circumscribed species, due to high variation of thalli formed by individuals within a fungal species, including the presence of distinct morphs in some cases, or low interspecific variation in others. The four commonly recognised morphospecies: P. dolichorhiza, P. neopolydactyla, P. pulverulenta and P. scabrosa in the dolichorhizoid and scabrosoid clades represent species complexes spread across multiple and often phylogenetically distantly related lineages. Geographic origin of specimens is often helpful for species recognition; however, ITS sequences are frequently required for a reliable identification. Citation: Magain N, Miadlikowska J, Goffinet B, et al. 2023. High species richness in the lichen genus Peltigera (Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. Persoonia 51: 1-88. doi: 10.3767/persoonia.2023.51.01.
Collapse
Affiliation(s)
- N. Magain
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - J. Miadlikowska
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - B. Goffinet
- Ecology and Evolutionary Biology, Unit 3043, University of Connecticut, 75 North Eagleville road, Storrs CT, 06269-3043 USA
| | - T. Goward
- Beaty Biodiversity Museum, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - C.J. Pardo-De la Hoz
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - I. Jüriado
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu 50409, Estonia; Institute of Agricultural & Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - A. Simon
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
- Ecology and Evolutionary Biology, Unit 3043, University of Connecticut, 75 North Eagleville road, Storrs CT, 06269-3043 USA
| | - J.A. Mercado-Díaz
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois, 60605 USA
| | - T. Barlow
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - B. Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26B-54, Torre de Laboratorios, Herbario, Bogotá, Colombia; current address: Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
| | - R. Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
| | - A. Spielmann
- Laboratòrio de Botanica / Liquenologia, Instituto de Biociencias, Universidade Federal de Mato Grosso do Sul, Campo Grande – MS, Brazil
| | - L. Canez
- Laboratòrio de Botanica / Liquenologia, Instituto de Biociencias, Universidade Federal de Mato Grosso do Sul, Campo Grande – MS, Brazil
| | - L.S. Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming 650201, China
| | - P. Nelson
- Natural and Behavioral Sciences Division, University of Maine – Fort Kent, Fort Kent, ME, USA
| | - T. Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - F. Lutzoni
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - E. Sérusiaux
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
| |
Collapse
|
2
|
Kalra R, Conlan XA, Goel M. Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnol Adv 2023; 62:108072. [PMID: 36464145 DOI: 10.1016/j.biotechadv.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Several research studies have shown that lichens are productive organisms for the synthesis of a broad range of secondary metabolites. Lichens are a self-sustainable stable microbial ecosystem comprising an exhabitant fungal partner (mycobiont) and at least one or more photosynthetic partners (photobiont). The successful symbiosis is responsible for their persistence throughout time and allows all the partners (holobionts) to thrive in many extreme habitats, where without the synergistic relationship they would be rare or non-existent. The ability to survive in harsh conditions can be directly correlated with the production of some unique metabolites. Despite the potential applications, these unique metabolites have been underutilised by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability and technical challenges involved in their artificial cultivation. However, recent development of biotechnological tools such as molecular phylogenetics, modern tissue culture techniques, metabolomics and molecular engineering are opening up a new opportunity to exploit these compounds within the lichen holobiome for industrial applications. This review also highlights the recent advances in culturing the symbionts and the computational and molecular genetics approaches of lichen gene regulation recognized for the enhanced production of target metabolites. The recent development of multi-omics novel biodiscovery strategies aided by synthetic biology in order to study the heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offers a promising means for a sustainable supply of specialized metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India.
| |
Collapse
|
3
|
Chavarria-Pizarro T, Resl P, Kuhl-Nagel T, Janjic A, Fernandez Mendoza F, Werth S. Antibiotic-Induced Treatments Reveal Stress-Responsive Gene Expression in the Endangered Lichen Lobaria pulmonaria. J Fungi (Basel) 2022; 8:jof8060625. [PMID: 35736108 PMCID: PMC9225190 DOI: 10.3390/jof8060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics are primarily found in the environment due to human activity, which has been reported to influence the structure of biotic communities and the ecological functions of soil and water ecosystems. Nonetheless, their effects in other terrestrial ecosystems have not been well studied. As a result of oxidative stress in organisms exposed to high levels of antibiotics, genotoxicity can lead to DNA damage and, potentially, cell death. In addition, in symbiotic organisms, removal of the associated microbiome by antibiotic treatment has been observed to have a big impact on the host, e.g., corals. The lung lichen Lobaria pulmonaria has more than 800 associated bacterial species, a microbiome which has been hypothesized to increase the lichen's fitness. We artificially exposed samples of L. pulmonaria to antibiotics and a stepwise temperature increase to determine the relative effects of antibiotic treatments vs. temperature on the mycobiont and photobiont gene expression and the viability and on the community structure of the lichen-associated bacteria. We found that the mycobiont and photobiont highly reacted to different antibiotics, independently of temperature exposure. We did not find major differences in bacterial community composition or alpha diversity between antibiotic treatments and controls. For these reasons, the upregulation of stress-related genes in antibiotic-treated samples could be caused by genotoxicity in L. pulmonaria and its photobiont caused by exposure to antibiotics, and the observed stress responses are reactions of the symbiotic partners to reduce damage to their cells. Our study is of great interest for the community of researchers studying symbiotic organisms as it represents one of the first steps to understanding gene expression in an endangered lichen in response to exposure to toxic environments, along with dynamics in its associated bacterial communities.
Collapse
Affiliation(s)
- Tania Chavarria-Pizarro
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Correspondence: (T.C.-P.); (S.W.)
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria;
| | - Theresa Kuhl-Nagel
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Network Biology (INET), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany;
| | | | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Correspondence: (T.C.-P.); (S.W.)
| |
Collapse
|
4
|
Chavarria-Pizarro T, Resl P, Janjic A, Werth S. Gene expression responses to thermal shifts in the endangered lichen Lobaria pulmonaria. Mol Ecol 2021; 31:839-858. [PMID: 34784096 DOI: 10.1111/mec.16281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change has led to unprecedented shifts in temperature across many ecosystems. In a context of rapid environmental changes, acclimation is an important process as it may influence the capacity of organisms to survive under novel thermal conditions. Mechanisms of acclimation could involve upregulation of stress response genes involved in protein folding, DNA damage repair and the regulation of signal transduction genes, along with a simultaneous downregulation of genes involved in growth or the cell cycle, in order to maintain cellular functions and equilibria. We transplanted Lobaria pulmonaria lichens originating from different forests to determine the relative effects of long-term acclimation and genetic factors on the variability in expression of mycobiont and photobiont genes. We found a strong response of the mycobiont and photobiont to high temperatures, regardless of sample origin. The green-algal photobiont had an overall lower response than the mycobiont. Gene expression of both symbionts was also influenced by acclimation to transplantation sites and by genetic factors. L. pulmonaria seems to have evolved powerful molecular pathways to deal with environmental fluctuations and stress and can acclimate to new habitats by transcriptomic convergence. Although L. pulmonaria has the molecular machinery to counteract short-term thermal stress, survival of lichens such as L. pulmonaria depends mostly on their long-term positive carbon balance, which can be compromised by higher temperatures and reduced precipitation, and both these outcomes have been predicted for Central Europe in connection with global climate change.
Collapse
Affiliation(s)
| | - Philipp Resl
- Systematic Botany and Mycology, Faculty of Biology, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Silke Werth
- Systematic Botany and Mycology, Faculty of Biology, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| |
Collapse
|
5
|
|
6
|
Nazem-Bokaee H, Hom EFY, Warden AC, Mathews S, Gueidan C. Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling. Front Microbiol 2021; 12:667864. [PMID: 34012428 PMCID: PMC8126723 DOI: 10.3389/fmicb.2021.667864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lichen associations, a classic model for successful and sustainable interactions between micro-organisms, have been studied for many years. However, there are significant gaps in our understanding about how the lichen symbiosis operates at the molecular level. This review addresses opportunities for expanding current knowledge on signalling and metabolic interplays in the lichen symbiosis using the tools and approaches of systems biology, particularly network modelling. The largely unexplored nature of symbiont recognition and metabolic interdependency in lichens could benefit from applying a holistic approach to understand underlying molecular mechanisms and processes. Together with ‘omics’ approaches, the application of signalling and metabolic network modelling could provide predictive means to gain insights into lichen signalling and metabolic pathways. First, we review the major signalling and recognition modalities in the lichen symbioses studied to date, and then describe how modelling signalling networks could enhance our understanding of symbiont recognition, particularly leveraging omics techniques. Next, we highlight the current state of knowledge on lichen metabolism. We also discuss metabolic network modelling as a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-dependence between symbionts. This is especially important given the growing number of lichen genomes now available and improved computational tools for reconstructing such models. We highlight the benefits and possible bottlenecks for implementing different types of network models as applied to the study of lichens.
Collapse
Affiliation(s)
- Hadi Nazem-Bokaee
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia.,CSIRO Land and Water, Canberra, ACT, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, The University of Mississippi, University City, MS, United States
| | | | - Sarah Mathews
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cécile Gueidan
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia
| |
Collapse
|
7
|
Tuovinen V, Ekman S, Thor G, Vanderpool D, Spribille T, Johannesson H. Two Basidiomycete Fungi in the Cortex of Wolf Lichens. Curr Biol 2019; 29:476-483.e5. [PMID: 30661799 DOI: 10.1016/j.cub.2018.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023]
Abstract
Since the late 1800s, mycologists have been detecting fungi above and beyond the assumed single fungus in lichen thalli [1-6]. Over the last century, these fungi have been accorded roles ranging from commensalists to pathogens. Recently, Cyphobasidiales yeasts were shown to be ubiquitous in the cortex layer of many macrolichens [7], but for most species, little is known of their cellular distribution and constancy beyond visible fruiting structures. Here, we demonstrate the occurrence of an additional and distantly related basidiomycete, Tremella, in 95% of studied thalli in a global sample of one of the most intensively studied groups of lichens, the wolf lichens (genus Letharia). Tremella species are reported from a wide range of lichen genera [8], but until now, their biology was deduced from fruiting bodies (basidiomata) formed on lichen thalli. Based on this, they have been thought to be uncommon to rare, to occur exclusively in a hyphal form, and to be parasitic on the dominant fungal partner [9, 10]. We show that, in wolf lichens, Tremella occurs as yeast cells also in thalli that lack basidiomata and infer that this is its dominant stage in nature. We further show that the hyphal stage, when present in Letharia, is in close contact with algal cells, challenging the assumption that lichen-associated Tremella species are uniformly mycoparasites. Our results suggest that extent of occurrence and cellular interactions of known fungi within lichens have historically been underestimated and raise new questions about their function in specific lichen symbioses.
Collapse
Affiliation(s)
- Veera Tuovinen
- Department of Biological Sciences CW 405, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden; Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, 750 07 Uppsala, Sweden.
| | - Stefan Ekman
- Museum of Evolution, Uppsala University, Norbyvägen 16, 752 36 Uppsala, Sweden
| | - Göran Thor
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, 750 07 Uppsala, Sweden
| | - Dan Vanderpool
- Department of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA; Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Toby Spribille
- Department of Biological Sciences CW 405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| |
Collapse
|
8
|
Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47:1730-1760. [PMID: 29094129 DOI: 10.1039/c7cs00431a] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
9
|
Abstract
ABSTRACT
Lichen symbioses comprise a fascinating relationship between algae and fungi. The lichen symbiotic lifestyle evolved early in the evolution of ascomycetes and is also known from a few basidiomycetes. The ascomycete lineages have diversified in the lichenized stage to give rise to a tremendous variety of morphologies. Their thalli are often internally complex and stratified for optimized integration of algal and fungal metabolisms. Thalli are frequently colonized by specific nonlichenized fungi and occasionally also by other lichens. Microscopy has revealed various ways these fungi interact with their hosts. Besides the morphologically recognizable diversity of the lichen mycobionts and lichenicolous (lichen-inhabiting) fungi, many other microorganisms including other fungi and bacterial communities are now detected in lichens by culture-dependent and culture-independent approaches. The application of multi-omics approaches, refined microscopic techniques, and physiological studies has added to our knowledge of lichens, not only about the taxa involved in the lichen interactions, but also about their functions.
Collapse
|
10
|
|
11
|
Steinhäuser SS, Andrésson ÓS, Pálsson A, Werth S. Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biol 2016; 120:1194-208. [PMID: 27647237 DOI: 10.1016/j.funbio.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Organisms have evolved different cellular mechanisms to deal with environmental stress, primarily through complex molecular mechanisms including protein refolding and DNA repair. As mutualistic symbioses, lichens offer the possibility of analyzing molecular stress responses in a particularly tight interspecific relationship. We study the widespread cyanolichen Peltigera membranacea, a key player in carbon and nitrogen cycling in terrestrial ecosystems at northern latitudes. We ask whether increased temperature is reflected in mRNA levels of selected damage control genes, and do the response patterns show geographical associations? Using real-time PCR quantification of 38 transcripts, differential expression was demonstrated for nine cyanobacterial and nine fungal stress response genes (plus the fungal symbiosis-related lec2 gene) when the temperature was increased from 5 °C to 15 °C and 25 °C. Principle component analysis (PCA) revealed two gene groups with different response patterns. Whereas a set of cyanobacterial DNA repair genes and the fungal lec2 (PC1 group) showed an expression drop at 15 °C vs. 5 °C, most fungal candidates (PC2 group) showed increased expression at 25 °C vs. 5 °C. PC1 responses also correlated with elevation. The correlated downregulation of lec2 and cyanobacterial DNA repair genes suggests a possible interplay between the symbionts warranting further studies.
Collapse
Affiliation(s)
- Sophie S Steinhäuser
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Silke Werth
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria.
| |
Collapse
|
12
|
Athukorala SNP, Piercey-Normore MD. Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts. Can J Microbiol 2015; 61:1-12. [PMID: 25485526 DOI: 10.1139/cjm-2014-0470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognition and defense responses are early events in plant-pathogen interactions and between lichen symbionts. The effect of elicitors on responses between lichen symbionts is not well understood. The objective of this study was to compare the difference in recognition- and defense-related gene expression as a result of culture extracts (containing secreted water-soluble elicitors) from compatible and incompatible interactions at each of 3 resynthesis stages in the symbionts of Cladonia rangiferina. This study investigated gene expression by quantitative PCR in cultures of C. rangiferina and its algal partner, Asterochloris glomerata/irregularis, after incubation with liquid extracts from cultures of compatible and incompatible interactions at 3 early resynthesis stages. Recognition-related genes were significantly upregulated only after physical contact, demonstrating symbiont recognition in later resynthesis stages than expected. One of 3 defense-related genes, chit, showed significant downregulation in early resynthesis stages and upregulation in the third resynthesis stage, demonstrating a need for the absence of chitinase early in thallus formation and a need for its presence in later stages as an algal defense reaction. This study revealed that recognition- and defense-related genes are triggered by components in culture extracts at 3 stages of resynthesis, and some defense-related genes may be induced throughout thallus growth. The parasitic nature of the interaction shows parallels between lichen symbionts and plant pathogenic systems.
Collapse
|
13
|
Doering JA, Miao VPW, Piercey-Normore MD. Rehydration conditions for isolation of high quality RNA from the lichen Lobaria pulmonaria. BMC Res Notes 2014; 7:442. [PMID: 25011382 PMCID: PMC4105863 DOI: 10.1186/1756-0500-7-442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/08/2014] [Indexed: 11/21/2022] Open
Abstract
Background The poikilohydric nature of lichens enables them to survive repeated episodes of desiccation by utilizing water when it becomes available. During rehydration, RNA-degrading endonucleases may be released, reducing RNA quantity and quality. Re-generation of a steady-state condition where RNA quantity and quality no longer fluctuate establishes a framework for development of new hypotheses for future investigations. Using Lobaria pulmonaria as a model species, the objective of this study was to compare the effect of different rehydration conditions on the quantity and quality of RNA from the rehydrated thallus. Findings Spectrophotometric measurements of total RNA and cDNA were performed for samples prepared from dry lichen or lichen after rehydration (0.5 h, 1 h, 2 h, 4 h or 24 h), with limited light and dark conditions, and at three temperatures (15°C, 20°C or 32°C) for some of these conditions. The results showed that rehydration of the thallus for 4 h at 20°C in light yielded the highest concentration and quality of RNA. A higher RNA concentration was obtained in light than in dark conditions, but the RNA quality was unaffected. Conclusions This study suggests that allowance of 4 h for thallus rehydration should be adequate to ensure complete recovery of transcription. After 4 h at 20°C further studies can be carried out on the RNA in this model species.
Collapse
Affiliation(s)
| | | | - Michele D Piercey-Normore
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2 N2, Canada.
| |
Collapse
|
14
|
|
15
|
Magain N, Sérusiaux E. Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS One 2014; 9:e89876. [PMID: 24587091 PMCID: PMC3933699 DOI: 10.1371/journal.pone.0089876] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/27/2014] [Indexed: 11/23/2022] Open
Abstract
Lichen symbioses in the Pannariaceae associate an ascomycete and either cyanobacteria alone (usually Nostoc; bipartite thalli) or green algae and cyanobacteria (cyanobacteria being located in dedicated structures called cephalodia; tripartite thalli) as photosynthetic partners (photobionts). In bipartite thalli, cyanobacteria can either be restricted to a well-delimited layer within the thallus ('pannarioid' thalli) or spread over the thallus that becomes gelatinous when wet ('collematoid' thalli). We studied the collematoid genera Kroswia and Physma and an undescribed tripartite species along with representatives of the pannarioid genera Fuscopannaria, Pannaria and Parmeliella. Molecular inferences from 4 loci for the fungus and 1 locus for the photobiont and statistical analyses within a phylogenetic framework support the following: (a) several switches from pannarioid to collematoid thalli occured and are correlated with photobiont switches; the collematoid genus Kroswia is nested within the pannarioid genus Fuscopannaria and the collematoid genus Physma is sister to the pannarioid Parmeliella mariana group; (b) Nostoc associated with collematoid thalli in the Pannariaceae are related to that of the Collemataceae (which contains only collematoid thalli), and never associated with pannarioid thalli; Nostoc associated with pannarioid thalli also associate in other families with similar morphology; (c) ancestors of several lineages in the Pannariaceae developed tripartite thalli, bipartite thalli probably resulting from cephalodia emancipation from tripartite thalli which eventually evolved and diverged, as suggested by the same Nostoc present in the collematoid genus Physma and in the cephalodia of a closely related tripartite species; Photobiont switches and cephalodia emancipation followed by divergence are thus suspected to act as evolutionary drivers in the family Pannariaceae.
Collapse
Affiliation(s)
- Nicolas Magain
- Evolution and Conservation Biology Unit, University of Liège, Liège, Belgium
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology Unit, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Wang YY, Liu B, Zhang XY, Zhou QM, Zhang T, Li H, Yu YF, Zhang XL, Hao XY, Wang M, Wang L, Wei JC. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 2014; 15:34. [PMID: 24438332 PMCID: PMC3897900 DOI: 10.1186/1471-2164-15-34] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lichen is a classic mutualistic organism and the lichenization is one of the fungal symbioses. The lichen-forming fungus Endocarpon pusillum is living in symbiosis with the green alga Diplosphaera chodatii Bialsuknia as a lichen in the arid regions. RESULTS 454 and Illumina technologies were used to sequence the genome of E. pusillum. A total of 9,285 genes were annotated in the 37.5 Mb genome of E. pusillum. Analyses of the genes provided direct molecular evidence for certain natural characteristics, such as homothallic reproduction and drought-tolerance. Comparative genomics analysis indicated that the expansion and contraction of some protein families in the E. pusillum genome reflect the specific relationship with its photosynthetic partner (D. chodatii). Co-culture experiments using the lichen-forming fungus E. pusillum and its algal partner allowed the functional identification of genes involved in the nitrogen and carbon transfer between both symbionts, and three lectins without signal peptide domains were found to be essential for the symbiotic recognition in the lichen; interestingly, the ratio of the biomass of both lichen-forming fungus and its photosynthetic partner and their contact time were found to be important for the interaction between these two symbionts. CONCLUSIONS The present study lays a genomic analysis of the lichen-forming fungus E. pusillum for demonstrating its general biological features and the traits of the interaction between this fungus and its photosynthetic partner D. chodatii, and will provide research basis for investigating the nature of its drought resistance and symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
17
|
Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 2013; 110:E3129-37. [PMID: 23898213 DOI: 10.1073/pnas.1305867110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteria are a major source of natural products that provide rich opportunities for both chemical and biological investigation. Although the vast majority of known bacterial metabolites derive from free-living organisms, increasing evidence supports the widespread existence of chemically prolific bacteria living in symbioses. A strategy based on bioinformatic prediction, symbiont cultivation, isotopic enrichment, and advanced analytics was used to characterize a unique polyketide, nosperin, from a lichen-associated Nostoc sp. cyanobacterium. The biosynthetic gene cluster and the structure of nosperin, determined from 30 μg of compound, are related to those of the pederin group previously known only from nonphotosynthetic bacteria associated with beetles and marine sponges. The presence of this natural product family in such highly dissimilar associations suggests that some bacterial metabolites may be specific to symbioses with eukaryotes and encourages exploration of other symbioses for drug discovery and better understanding of ecological interactions mediated by complex bacterial metabolites.
Collapse
|
18
|
Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis 2013. [DOI: 10.1007/s13199-013-0232-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Meeßen J, Eppenstein S, Ott S. Recognition mechanisms during the pre-contact state of lichens: II. Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata. Symbiosis 2013. [DOI: 10.1007/s13199-012-0219-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Manoharan SS, Miao VPW, Andrésson ÓS. LEC-2, a highly variable lectin in the lichen Peltigera membranacea.. Symbiosis 2012; 58:91-98. [PMID: 23482294 PMCID: PMC3589653 DOI: 10.1007/s13199-012-0206-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Abstract
Lectins are a diverse group of carbohydrate binding proteins often involved in cellular interactions. A lectin gene, lec-2, was identified in the mycobiont of the lichen Peltigera membranacea. Sequencing of lec-2 open reading frames from 21 individual samples showed an unexpectedly high level of polymorphism in the deduced protein (LEC-2), which was sorted into nine haplotypes based on amino acid sequence. Calculations showed that the rates of nonsynonymous versus synonymous nucleotide substitutions deviated significantly from the null hypothesis of neutrality, indicating strong positive selection. Molecular modeling revealed that most amino acid replacements were around the putative carbohydrate-binding pocket, indicating changes in ligand binding. Lectins have been thought to be involved in the recognition of photobiont partners in lichen symbioses, and the hypothesis that positive selection of LEC-2 is driven by variation in the Nostoc photobiont partner was tested by comparing mycobiont LEC-2 haplotypes and photobiont genotypes, as represented by the rbcLX region. It was not possible to pair up the two types of marker sequences without conflicts, suggesting that positive selection of LEC-2 was not due to variation in photobiont partners.
Collapse
Affiliation(s)
- Sheeba S. Manoharan
- Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Vivian P. W. Miao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Ólafur S. Andrésson
- Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| |
Collapse
|