1
|
Goh D, Martin JGA, Banchini C, MacLean AM, Stefani F. RocTest: A standardized method to assess the performance of root organ cultures in the propagation of arbuscular mycorrhizal fungi. Front Microbiol 2022; 13:937912. [PMID: 35966663 PMCID: PMC9366734 DOI: 10.3389/fmicb.2022.937912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past three decades, root organ cultures (ROCs) have been the gold standard method for studying arbuscular mycorrhizal fungi (AMF) under in vitro conditions, and ROCs derived from various plant species have been used as hosts for AM monoxenic cultures. While there is compelling evidence that host identity can significantly modify AMF fitness, there is currently no standardized methodology to assess the performance of ROCs in the propagation of their fungal symbionts. We describe RocTest, a robust methodological approach that models the propagation of AMF in symbiosis with ROCs. The development of extraradical fungal structures and the pattern of sporulation are modeled using cumulative link mixed models and linear mixed models. We demonstrate functionality of RocTest by evaluating the performance of three species of ROCs (Daucus carota, Medicago truncatula, Nicotiana benthamiana) in the propagation of three species of AMF (Rhizophagus clarus, Rhizophagus irregularis, Glomus sp.). RocTest produces a simple graphical output to assess the performance of ROCs and shows that fungal propagation depends on the three-way interaction between ROC, AMF, and time. RocTest makes it possible to identify the best combination of host/AMF for fungal development and spore production, making it an important asset for germplasm collections and AMF research.
Collapse
Affiliation(s)
- Dane Goh
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Claudia Banchini
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | | | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| |
Collapse
|
2
|
Pandit A, Kochar M, Srivastava S, Johny L, Adholeya A. Diversity and Functionalities of Unknown Mycorrhizal Fungal Microbiota. Microbiol Res 2021; 256:126940. [PMID: 34923238 DOI: 10.1016/j.micres.2021.126940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
Beneficial ecosystem services provided by arbuscular mycorrhizal fungi (AMF) are the outcome of their synergistic actions with diverse bacterial communities (AMF-associated bacteria; AAB) living in strict association with AMF hyphae and spores. Herein, bacterial diversity associated with 6 AMF species from 33 different co-cultures belonging to order Glomerales and Diversisporales were identified, using a combination of culture-dependent functional analyses and amplicon sequencing. Overall, 231 bacterial strains were isolated from the AMF spores and hyphae which covered 30 bacterial genera and 52 species. Hierarchical clustering based on plant growth promoting traits identified 9 clades comprising diverse bacterial genera with clades 7, 8 and 9 representing the most functionally rich AAB. High-throughput amplicon sequencing across a small subset of 8 AMF co-cultures spread across 3 AMF genera identified Operational Taxonomic Units belonging to 118 bacterial genera. The study revealed a greater diversity of AAB from spores of in vitro transformed AMF root co-cultures rather than in situ, pot AMF cultures. Functionally active, culturable AABs with multiple plant growth promoting traits such as phosphate solubilisation, nitrogen fixation, biofilm formation, enzyme and plant growth regulator production along with biocontrol activity were identified. These properties could be utilized individually and/or as consortia with AMF, as biological growth enhancers.
Collapse
Affiliation(s)
- Aditi Pandit
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Mandira Kochar
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India.
| | - Shivani Srivastava
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Leena Johny
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| |
Collapse
|
3
|
|
4
|
Chaudhary S, Gupta P, Srivastava S, Adholeya A. Understanding dynamics of Rhizophagus irregularis ontogenesis in axenically developed coculture through basic and advanced microscopic techniques. J Basic Microbiol 2019; 59:767-774. [PMID: 31074496 DOI: 10.1002/jobm.201900138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Detailed information on structural changes that occur during ontogenesis of Rhizophagus irregularis in axenically developed coculture is limited. Our study aims to investigate the series of events that occur during mycorrhizal ontogenesis under axenic condition through basic and advanced microscopic techniques followed by comparison among these to identify the suitable technique for rapid and detailed analysis of mycorrhizal structures. Three stages were identified in mycorrhizal ontogenesis from initiation (preinfection stage of hyphae; its branching, infection and appressoria formation; epidermal opening; and hyphal entry), progression (arbuscular development; hyphal coils and vesicles) to maturity (extraradical spores). Scanning electron microscopy was found to be an efficient tool for studying spatial three-dimensional progression. Adding to the advantages of advanced microscopy, potential of autofluorescence to explore the stages of symbiosis nondestructively was also established. We also report imaging of ultrathin sections by bright field microscopy to provide finer details at subcellular interface. Owing to the merits of nondestructive sampling, ease of sample preparation, autofluorescence (no dye required), no use of toxic chemicals, rapid analysis and in depth characterization confocal laser scanning microscopy was identified as the most preferred technique. The method thus developed can be used for detailed structural inquisition of mycorrhizal symbiosis both in in planta and in an in vitro system.
Collapse
Affiliation(s)
- Shikha Chaudhary
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Priyanka Gupta
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Shivani Srivastava
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| |
Collapse
|
5
|
Srivastava S, Conlan XA, Cahill DM, Adholeya A. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system. MYCORRHIZA 2016; 26:919-930. [PMID: 27485855 DOI: 10.1007/s00572-016-0721-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/05/2016] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.
Collapse
Affiliation(s)
- Shivani Srivastava
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, (Waurn Ponds Campus), Deakin University, Geelong, Australia, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - Xavier A Conlan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, (Waurn Ponds Campus), Deakin University, Geelong, Australia, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - David M Cahill
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, (Waurn Ponds Campus), Deakin University, Geelong, Australia, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India.
| |
Collapse
|
6
|
Asmelash F, Bekele T, Birhane E. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands. Front Microbiol 2016; 7:1095. [PMID: 27507960 PMCID: PMC4960231 DOI: 10.3389/fmicb.2016.01095] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/30/2016] [Indexed: 11/28/2022] Open
Abstract
Experiences worldwide reveal that degraded lands restoration projects achieve little success or fail. Hence, understanding the underlying causes and accordingly, devising appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration and global commitments in degraded lands restoration could be realized. Here we explain that arbuscular mycorrhizal fungi (AMF) biotechnology is a potential mechanism to significantly improve the restoration success of degraded lands. There are abundant scientific evidences to demonstrate that AMF significantly improve soil attributes, increase above and belowground biodiversity, significantly improve tree/shrub seedlings survival, growth and establishment on moisture and nutrient stressed soils. AMF have also been shown to drive plant succession and may prevent invasion by alien species. The very few conditions where infective AMF are low in abundance and diversity is when the soil erodes, is disturbed and is devoid of vegetation cover. These are all common features of degraded lands. Meanwhile, degraded lands harbor low levels of infective AMF abundance and diversity. Therefore, the successful restoration of infective AMF can potentially improve the restoration success of degraded lands. Better AMF inoculation effects result when inocula are composed of native fungi instead of exotics, early seral instead of late seral fungi, and are consortia instead of few or single species. Future research efforts should focus on AMF effect on plant community primary productivity and plant competition. Further investigation focusing on forest ecosystems, and carried out at the field condition is highly recommended. Devising cheap and ethically widely accepted inocula production methods and better ways of AMF in situ management for effective restoration of degraded lands will also remain to be important research areas.
Collapse
Affiliation(s)
- Fisseha Asmelash
- Forest and Range Land Biodiversity Conservation Directorate, Ethiopian Biodiversity InstituteAddis Ababa, Ethiopia
- Department of Plant Biology and Biodiversity Management, Addis Ababa UniversityAddis Ababa, Ethiopia
| | - Tamrat Bekele
- Department of Plant Biology and Biodiversity Management, Addis Ababa UniversityAddis Ababa, Ethiopia
| | - Emiru Birhane
- Department of Land Resources Management and Environmental Protection, Mekelle UniversityMekelle, Ethiopia
- Department of Ecology and Natural Resource Management, Norwegian University of Life SciencesÅs, Norway
| |
Collapse
|
7
|
|