1
|
Sun F, Chen J, Liu K, Tang M, Yang Y. The avian gut microbiota: Diversity, influencing factors, and future directions. Front Microbiol 2022; 13:934272. [PMID: 35992664 PMCID: PMC9389168 DOI: 10.3389/fmicb.2022.934272] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is viewed as the “second genome” of animals, sharing intricate relationships with their respective hosts. Because the gut microbial community and its diversity are affected by many intrinsic and extrinsic factors, studying intestinal microbes has become an important research topic. However, publications are dominated by studies on domestic or captive birds, while research on the composition and response mechanism of environmental changes in the gut microbiota of wild birds remains scarce. Therefore, it is important to understand the co-evolution of host and intestinal bacteria under natural conditions to elucidate the diversity, maintenance mechanisms, and functions of gut microbes in wild birds. Here, the existing knowledge of gut microbiota in captive and wild birds is summarized, along with previous studies on the composition and function, research methods employed, and factors influencing the avian gut microbial communities. Furthermore, research hotspots and directions were also discussed to identify the dynamics of the avian gut microbiota, aiming to contribute to studies of avian microbiology in the future.
Collapse
|
2
|
Akhil Prakash E, Hromádková T, Jabir T, Vipindas PV, Krishnan KP, Mohamed Hatha AA, Briedis M. Dissemination of multidrug resistant bacteria to the polar environment - Role of the longest migratory bird Arctic tern (Sterna paradisaea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152727. [PMID: 34974001 DOI: 10.1016/j.scitotenv.2021.152727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The ever-increasing prevalence of antibiotic-resistant bacteria(ARB), primarily due to the frequent use and misuse of antibiotics, is an issue of serious global concern. Migratory birds have a significant role in dissemination of ARB, as they acquire resistant bacteria from reservoirs and transport them to other environments which are relatively less influenced by anthropogenically. We have investigated the prevalence of ARB in a long-distance migratory bird, the Arctic tern (Sterna paradisaea) captured from the Svalbard Archipelago. The birds were tagged with geolocators to track their extraordinary long migration, and the cloacal samples were collected before the migration and after the migration by recapturing the same birds. The tracking of 12 birds revealed that during the annual cycle they underwent a total of 166 stopovers (11-18, mean = 3.8) and recovery points along the Atlantic Ocean. Twelve major bacterial genera were identified from Arctic tern cloacal samples, which are dominated by Staphylococcus spp. and Aerococcus spp. The bacterial isolates showed resistance against 16 antibiotics (before migration) and 17 antibiotics (after migration) out of 17 antibiotics tested. Resistance to β-lactam and quinolone class of antibiotics were frequent among the bacteria. The study highlights the potential role of Arctic tern in the dissemination of multidrug resistant bacteria across far and wide destinations, especially to the polar environments.
Collapse
Affiliation(s)
- E Akhil Prakash
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India.
| | - Tereza Hromádková
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Centre for Polar Ecology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - T Jabir
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa 403 804, India.
| | - P V Vipindas
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa 403 804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa 403 804, India; CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India; CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India.
| | - Martins Briedis
- Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland; Lab of Ornithology, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| |
Collapse
|
3
|
Lee SJ, Cho S, La TM, Lee HJ, Lee JB, Park SY, Song CS, Choi IS, Lee SW. Comparison of microbiota in the cloaca, colon, and magnum of layer chicken. PLoS One 2020; 15:e0237108. [PMID: 32750076 PMCID: PMC7402502 DOI: 10.1371/journal.pone.0237108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Anatomically terminal parts of the urinary, reproductive, and digestive systems of birds all connect to the cloaca. As the feces drain through the cloaca in chickens, the cloacal bacteria were previously believed to represent those of the digestive system. To investigate similarities between the cloacal microbiota and the microbiota of the digestive and reproductive systems, microbiota inhabiting the colon, cloaca, and magnum, which is a portion of the chicken oviduct of 34-week-old, specific-pathogen-free hens were analyzed using a 16S rRNA metagenomic approach using the Ion torrent sequencer and the Qiime2 bioinformatics platform. Beta diversity via unweighted and weighted unifrac analyses revealed that the cloacal microbiota was significantly different from those in the colon and the magnum. Unweighted unifrac revealed that the cloacal microbiota was distal from the microbiota in the colon than from the microbiota in the magnum, whereas weighted unifrac revealed that the cloacal microbiota was located further away from the microbiota in the magnum than from the microbiota inhabiting the colon. Pseudomonas spp. were the most abundant in the cloaca, whereas Lactobacillus spp. and Flavobacterium spp. were the most abundant species in the colon and the magnum. The present results indicate that the cloaca contains a mixed population of bacteria, derived from the reproductive, urinary, and digestive systems, particularly in egg-laying hens. Therefore, sampling cloaca to study bacterial populations that inhabit the digestive system of chickens requires caution especially when applied to egg-laying hens. To further understand the physiological role of the microbiota in chicken cloaca, exploratory studies of the chicken’s cloacal microbiota should be performed using chickens of different ages and types.
Collapse
Affiliation(s)
- Seo-Jin Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seongwoo Cho
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Tae-Min La
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hong-Jae Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Joong-Bok Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Yong Park
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - In-Soo Choi
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sang-Won Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol Ecol Resour 2017; 18:424-434. [PMID: 29205893 DOI: 10.1111/1755-0998.12744] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high-throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Biology, Lund University, Lund, Sweden
| | - Maria Strandh
- Department of Biology, Lund University, Lund, Sweden
| | - Anel Engelbrecht
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
| | - Schalk Cloete
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa.,Department of Animal Sciences, Stellenbosch University, Matieland, South Africa
| | | |
Collapse
|