1
|
Gil-Fernández M, Carthey AJR, Mendoza E, Godínez-Gómez O, G MCM, Blanco-García A, Delfín-Alfonso CA, Le Roux JJ. The impact of land use change on mycorrhizal fungi and their associations with rodents: insights from a temperate forest in Mexico. MYCORRHIZA 2025; 35:36. [PMID: 40338382 PMCID: PMC12062193 DOI: 10.1007/s00572-025-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Ecosystem functioning is influenced by biological diversity, ecological interactions, and abiotic conditions. Human interactions with ecosystems can cause major changes in how they function when involving changes in the vegetation cover and structure (i.e., land use change). This study examines how land use change affects the diversity of arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) in soil and rodent scats in temperate forest sites. We collected soil and rodent scat samples at five paired sites (i.e., disturbed vs. undisturbed) in Michoacan, Mexico. We identified 112 putative mycorrhizal fungi species using DNA barcoding based on partial internal transcribed region 1 (ITS) sequences. We found a higher richness of EMF in undisturbed soil samples compared to disturbed soil samples and a higher AMF diversity in rodent scat samples from disturbed than undisturbed sites. Scat samples had a high incidence of both AMF (75%) and EMF (100%). We found significant differences in the diversity of both AMF and EMF depending on the rodent species associated with them. We also found a higher diversity of EMF in scats in the wet season than in the dry season. We also report, for the first time, associations between Sigmodon hispidus and numerous AMF and EMF species. Overall, our study highlights the role of rodents as important dispersal vectors of mycorrhizal fungi, particularly for EMF that could be essential to build up mycorrhizal fungi spore banks in disturbed forests.
Collapse
Affiliation(s)
- Margarita Gil-Fernández
- School of Natural Sciences, Macquarie University, New South Wales, 2109, Australia.
- Posgrado en Biología Integrativa, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico.
- Laboratorio de Vertebrados, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico.
| | | | - Eduardo Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, San Juanito Itzicuaro Avenue, Nueva Esperanza, Morelia, Michoacán, 58330, México
| | - Oscar Godínez-Gómez
- Department of Wildlife Ecology and Conservation, School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32618, USA
| | - M Cristina MacSwiney G
- Centro de Investigaciones Tropicales, Universidad Veracruzana, José María Morelos y Pavon 44, Centro, Xalapa, Veracruz, 91000, México
| | - Arnulfo Blanco-García
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Francisco J. Múgica Avenue, Ciudad Universitaria, 58060, Morelia, Michoacan, Mexico
| | - Christian A Delfín-Alfonso
- Laboratorio de Vertebrados, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico
| | - Johannes J Le Roux
- School of Natural Sciences, Macquarie University, New South Wales, 2109, Australia
| |
Collapse
|
2
|
Assessing the role of soil microbial communities of natural forest ecosystem. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
In forests, edaphic microbial communities are involved in litter decomposition and soil forming processes, with major contribution to humification, especially bacteria and fungi being responsible for the main ecosystem services fulfilled by the soil. Research has been carried out aiming to characterize the structure and diversity of microbial communities in the Rendzic Leptosols (WRB) under natural deciduous forest from Visterna, Babadag Plateau and to assess their contribution to ecosystem services provided by soil. The paper presents the results of quantitative estimations and taxonomic composition of soil and litter communities of heterotrophic bacteria and fungi, identification of cellulolytic species, as well as the microbial biomass and global physiological activities expressed as soil respiration potential. More than a half of bacterial species were common in litter and soil (SI=57.14%) and were represented by dominant species of fluorescent or non-fluorescent pseudomonads and Bacillus subtilis but no similarity was found between the two fungal communities. Fungal populations included cosmopolitan species, such as antagonists and strong cellulolytic representatives of genera Penicillium, Trichoderma, Mortierella, Chaetomium, Epicoccum, Aspergillus. Microbial density and microbial biomass presented the highest values in the litter (684 mg C x kg-1 d.s.) and in surface horizon Am1 of soil profile than in the bottom layers. The highest diversity was found in Am1 horizon (0-5 cm) H’=1.983 bits and ε=0.869 for cellulolytic community. Soil respiration reflected the intense physiological activity of microbiome, with high values associated to numerous effectives of bacteria and fungi especially in surface horizon. Microorganisms identified contribute to formation of soil by recycling of nutrients, cellulose decomposition, the synthesis of stable organic matter (humic acids), aggregation of soil particles, biological control of pathogens by antagonistic activity. They improve plant uptake of water and nutrients by forming symbioses (ectomycorrhizae), thus modelling the structure of vegetation.
Collapse
|
4
|
Argüelles-Moyao A, Garibay-Orijel R. Ectomycorrhizal fungal communities in high mountain conifer forests in central Mexico and their potential use in the assisted migration of Abies religiosa. MYCORRHIZA 2018; 28:509-521. [PMID: 29948411 DOI: 10.1007/s00572-018-0841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Abies religiosa forests in central Mexico are the only overwinter refuge of the monarch butterfly and provide important ecosystem services. These forests have lost 55% of their original area and as a consequence, diversity and biotic interactions in these ecosystems are in risk. The aim of this study was to compare the soil fungal diversity and community structure in the Abies religiosa forests and surrounding Pinus montezumae, Pinus hartwegii, and coniferous mixed forest plant communities to provide data on ecology of mycorrhizal interactions for the assisted migration of A. religiosa. We sampled soil from five coniferous forests, extracted total soil DNA, and sequenced the ITS2 region by Illumina MiSeq. The soil fungi community was integrated by 1746 taxa with a species turnover ranging from 0.280 to 0.461 between sampling sites. In the whole community, the more abundant and frequent species were Russula sp. (aff. olivobrunnea), Mortierella sp.1, and Piloderma sp. (aff. olivacearum). The ectomycorrhizal fungi were the more frequent and abundant functional group. A total of 298 species (84 ectomycorrhizal) was shared in the five conifer forests; these widely distributed species were dominated by Russulaceae and Clavulinaceae. The fungal community composition was significantly influenced by altitude and the lowest species turnover happened between the two A. religiosa forests even though they have different soil types. As Pinus montezumae forests have a higher altitudinal distribution adjacent to A. religiosa and share the largest number of ectomycorrhizal fungi with it, we suggest these forests as a potential habitat for new A. religiosa populations.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
- Posgrado en Ciencias Biológicas, Edificio B, 1° Piso, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
| | - Roberto Garibay-Orijel
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico.
| |
Collapse
|