1
|
Moretti LG, Crusciol CAC, Leite MFA, Momesso L, Bossolani JW, Costa OYA, Hungria M, Kuramae EE. Diverse bacterial consortia: key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield. ENVIRONMENTAL MICROBIOME 2024; 19:50. [PMID: 39030648 PMCID: PMC11264919 DOI: 10.1186/s40793-024-00595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.
Collapse
Affiliation(s)
- Luiz Gustavo Moretti
- College of Agricultural Sciences, Department of Crop Science, São Paulo State University (UNESP), Botucatu, São Paulo, 18610-034, Brazil
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Carlos Alexandre Costa Crusciol
- College of Agricultural Sciences, Department of Crop Science, São Paulo State University (UNESP), Botucatu, São Paulo, 18610-034, Brazil
| | - Marcio Fernandes Alves Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Letusa Momesso
- School of Agriculture, Federal University of Goiás (UFG), 74690-900, Goiânia, Goiás, Brazil
| | - João William Bossolani
- College of Agricultural Sciences, Department of Crop Science, São Paulo State University (UNESP), Botucatu, São Paulo, 18610-034, Brazil
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Ohana Yonara Assis Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
| | - Mariangela Hungria
- Embrapa Soybean, Carlos João Strass Highway, Post Office Box 231, Londrina, Paraná, 86001-970, Brazil
| | - Eiko Eurya Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands.
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
2
|
Maroniche GA, Puente ML, García JE, Mongiardini E, Coniglio A, Nievas S, Labarthe MM, Wisniewski-Dyé F, Rodriguez Cáceres E, Díaz-Zorita M, Cassán F. Phenogenetic profile and agronomic contribution of Azospirillum argentinense Az39 T, a reference strain for the South American inoculant industry. Microbiol Res 2024; 283:127650. [PMID: 38452553 DOI: 10.1016/j.micres.2024.127650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Azospirillum sp. is a plant growth-promoting rhizobacteria largely recognized for its potential to increase the yield of different important crops. In this work, we present a thorough genomic and phenotypic analysis of A. argentinense Az39T to provide new insights into the beneficial mechanisms of this microorganism. Phenotypic analyses revealed the following in vitro abilities: growth at 20-38 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 6.8), and in the presence of 1% (w/v) NaCl; production of variable amounts of PHB as intracellular granules; nitrogen fixation under microaerophilic conditions; IAA synthesis in the presence of L-tryptophan. Through biochemical (API 20NE) and carbon utilization profiling (Biolog) assays, we proved that A. argentinense Az39T is able to use 15 substrates and metabolize 19 different carbon substrates. Lipid composition indicated a predominance of medium and long-chain saturated fatty acids. A total of 6 replicons classified as one main chromosome, three chromids, and two plasmids, according to their tRNA and core essential genes contents, were identified. Az39T genome includes genes associated with multiple plant growth-promoting (PGP) traits such as nitrogen fixation and production of auxins, cytokinin, abscisic acid, ethylene, and polyamines. In addition, Az39T genome harbor genetic elements associated with physiological features that facilitate its survival in the soil and competence for rhizospheric colonization; this includes motility, secretion system, and quorum sensing genetic determinants. A metadata analysis of Az39T agronomic performance in the pampas region, Argentina, demonstrated significant grain yield increases in wheat and maize, proving its potential to provide better growth conditions for dryland cereals. In conclusion, our data provide a detailed insight into the metabolic profile of A. argentinense Az39T, the strain most widely used to formulate non-legume inoculants in Argentina, and allow a better understanding of the mechanisms behind its field performance.
Collapse
Affiliation(s)
- G A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), CONICET, Balcarce, Buenos Aires, Argentina
| | - M L Puente
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - J E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - E Mongiardini
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, La Plata, Buenos Aires, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
| | - S Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
| | - M M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), CONICET, Balcarce, Buenos Aires, Argentina
| | - F Wisniewski-Dyé
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne 69622, France
| | | | - M Díaz-Zorita
- Facultad de Agronomía, Universidad Nacional de La Pampa (UNLPam), CONICET, Santa Rosa, La Pampa, Argentina
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
3
|
Julia I, Analía L, Oscar M, Zocolo Guilherme J, Laura VA, Virginia L. Formulation technology: Macrocystis pyrifera extract is a suitable support/medium for Azospirillum brasilense. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Bagheri N, Ahmadzadeh M, Mariotte P, Jouzani GS. Behavior and interactions of the plant growth-promoting bacteria Azospirillum oryzae NBT506 and Bacillus velezensis UTB96 in a co-culture system. World J Microbiol Biotechnol 2022; 38:101. [PMID: 35486223 PMCID: PMC9054896 DOI: 10.1007/s11274-022-03283-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to evaluate possible interactions between two potential plant growth-promoting bacteria (PGPB): Azospirillum oryzae strain NBT506 and Bacillus velezensis strain UTB96. To do this, the growth kinetic, biofilm formation, motility, surfactin production, indole-3-acetic acid (IAA) production, phosphate solubilization and enzyme activities of the strains were measured in monoculture and co-culture. The maximum biomass production for the strains in monoculture and co-culture was about 1011 CFU/ml, confirming that these two strains have the potential to grow in co-culture without reduction of biomass efficiency. The co-culture system showed more stable biofilm formation until the end of day 3. Azospirillum showed the maximum IAA production (41.5 mg/l) in a monoculture compared to other treatments. Surfactin promoted both swimming and swarming motility in all treatments. The Bacillus strain in the monoculture and co-culture showed high phosphate solubilizing capability, which increased continuously in the co-culture system after 6 days. The strains showed protease, amylase and cellulase activities in both monoculture and co-culture forms. Chitinase and lipase activities were observed in both the monoculture of the Bacillus strain and the co-culture. Overall, our findings highlight the promotion of biological and beneficial effects of these bacteria when growing together in co-culture.
Collapse
Affiliation(s)
- Negar Bagheri
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj, Iran
| | - Masoud Ahmadzadeh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj, Iran.
| | - Pierre Mariotte
- Agroscope, Grazing Systems, Route de la Tioleyre 4, 1725, Posieux, Switzerland.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Fahmideh Blvd, P.O. Box: 31535-1897, Karaj, Iran
| |
Collapse
|
5
|
Yurgel SN, Ajeethan N, Smertenko A. Response of Plant-Associated Microbiome to Plant Root Colonization by Exogenous Bacterial Endophyte in Perennial Crops. Front Microbiol 2022; 13:863946. [PMID: 35479645 PMCID: PMC9037143 DOI: 10.3389/fmicb.2022.863946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The application of bacterial inoculums for improving plant growth and production is an important component of sustainable agriculture. However, the efficiency of perennial crop inoculums depends on the ability of the introduced endophytes to exert an impact on the host-plant over an extended period of time. This impact might be evaluated by the response of plant-associated microbiome to the inoculation. In this study, we monitored the effect of a single bacterial strain inoculation on the diversity, structure, and cooperation in plant-associated microbiome over 1-year period. An endophyte (RF67) isolated from Vaccinium angustifolium (wild blueberry) roots and annotated as Rhizobium was used for the inoculation of 1-year-old Lonicera caerulea (Haskap) plants. A significant level of bacterial community perturbation was detected in plant roots after 3 months post-inoculation. About 23% of root-associated community variation was correlated with an application of the inoculant, which was accompanied by increased cooperation between taxa belonging to Proteobacteria and Actinobacteriota phyla and decreased cooperation between Firmicutes in plant roots. Additionally, a decrease in bacterial Shannon diversity and an increase in the relative abundances of Rhizobiaceae and Enterobacteriaceae were detected in the roots of inoculated plants relative to the non-inoculated control. A strong effect of the inoculation on the bacterial cooperation was also detected after 1 year of plant field growth, whereas no differences in bacterial community composition and also alpha and beta diversities were detected between bacterial communities from inoculated and non-inoculated roots. These findings suggest that while exogenous endophytes might have a short-term effect on the root microbiome structure and composition, they can boost cooperation between plant-growth-promoting endophytes, which can exist for the extended period of time providing the host-plant with long-lasting beneficial effects.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Prosser, WA, United States
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Ballesteros HGF, Rosman AC, Carvalho TLG, Grativol C, Hemerly AS. Cell wall formation pathways are differentially regulated in sugarcane contrasting genotypes associated with endophytic diazotrophic bacteria. PLANTA 2021; 254:109. [PMID: 34705112 DOI: 10.1007/s00425-021-03768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Differences in cell wall components between two BNF-contrasting sugarcane genotypes might result from genetic variations particular to the genotype and from the efficiency in diazotrophic bacteria association. Sugarcane is a plant of the grass family (Poaceae) that is highly cultivated in Brazil, as an important energy resource. Commercial sugarcane genotypes may be successfully associated with beneficial endophytic nitrogen-fixing bacteria, which can influence several plant metabolic pathways, such as cell division and growth, synthesis of hormones, and defense compounds. In this study, we investigated how diazotrophic bacteria associated with sugarcane plants could be involved in the regulation of cell wall formation pathways. A molecular and structural characterization of the cell wall was compared between two genotypes of sugarcane with contrasting rates of Biological Nitrogen Fixation (BNF): SP70-1143 (high BNF) and Chunee (low BNF). Differentially expressed transcripts were identified in transcriptomes generated from SP70-1143 and Chunee. Expression profiles of cellulose and lignin genes, which were more expressed in SP70-1134, and callose genes, which were more expressed in Chunee, were validated by RT-qPCR and microscopic analysis of cell wall components in tissue sections. A similar expression profile in both BNF-contrasting genotypes was observed in naturally colonized plants and in plants inoculated with G. diazotrophicus. Cell walls of the high BNF genotype have a greater cellulose content, which might contribute to increase biomass. In parallel, callose was concentrated in the vascular tissues of the low BNF genotype and could possibly represent a barrier for an efficient bacterial colonization and dissemination in sugarcane tissues. Our data show a correlation between the gene profiles identified in the BNF-contrasting genotypes and a successful association with endophytic diazotrophic bacteria.
Collapse
Affiliation(s)
- Helkin Giovani F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Aline C Rosman
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Thais Louise G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Clicia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Adriana Silva Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
7
|
Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates. Microbiol Res 2021; 250:126765. [PMID: 34049186 DOI: 10.1016/j.micres.2021.126765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/07/2020] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Root exudates play a crucial role in the symbiosis between leguminous plants and rhizobia. Our previous studies have shown that a fungal endophyte Phomopsis liquidambaris promotes peanut-rhizobia nodulation and nitrogen fixation, but the underlying mechanism are largely unknown. Here, we explore the role of peanut root exudates in Ph. liquidambaris-mediated nodulation enhancement. We first collected root exudates from Ph. liquidambaris-inoculated and un-inoculated peanuts and determined their effects on rhizobial growth, biofilm formation, chemotaxis, nodC gene expression, and peanut nodulation. Our results found a positive effect of Ph. liquidambaris-inoculated root exudates on these characteristics of rhizobia. Next, we compared the root exudates profile of Ph. liquidambaris-inoculated and un-inoculated plants and found that Ph. liquidambaris altered the concentrations of phenolic acids, flavonoids, organic acids and amino acids in root exudates. Furthermore, the rhizobial chemotaxis, growth and biofilm formation in response to the changed compounds at different concentrations showed that all of the test compounds induced rhizobial chemotactic behavior, and organic acids (citric acid and oxalic acid) and amino acid (glutamate, glycine and glutamine) at higher concentrations increased rhizobial growth and biofilm formation. Collectively, our results suggest that root exudates alterations contribute to Ph. liquidambaris-mediated peanut-rhizobia nodulation enhancement.
Collapse
|
8
|
Puente ML, Maroniche GA, Panepucci M, Sabio Y García J, García JE, Criado MV, Molina R, Cassán F. Localization and survival of Azospirillum brasilense Az39 in soybean leaves. Lett Appl Microbiol 2021; 72:626-633. [PMID: 33354785 DOI: 10.1111/lam.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022]
Abstract
In recent years, foliar inoculation has gained acceptance among the available methods to deliver plant beneficial micro-organisms to crops under field conditions. Colonization efficiency by such micro-organisms largely depends on their ability to survive when applied on the leaves. In this work, we evaluated the survival and localization of Azospirillum brasilense Az39 (Az39) in excised soybean leaves. Scanning electron microscopy and confocal laser scanning microscopy of a red fluorescent-transformed variant of Az39 were used to determine bacterial localization, while the most probable number and plate count methods were applied for bacterial quantification. Microscopic observations indicated a decrease in the number of Az39 cells on the leaf surface at 24 h after treatment, whereas midribs and cell-cell junctions of the inner leaf epidermis became highly populated zones. The presence of Az39 inside xylem vessels was corroborated at 6 h after bacterization. Az39 population did not significantly decrease throughout 24 h. We could visualize Az39 cells on the surface and in internal tissues of soybean leaves and recover them through culture methodologies. These results evidence the survival capacity of Az39 on and inside leaves and suggest a previously unnoticed endophytic potential for this well-known plant growth-promoting rhizobacteria strain.
Collapse
Affiliation(s)
- M L Puente
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA-IMYZA), Castelar, Argentina
| | - G A Maroniche
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - M Panepucci
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J Sabio Y García
- Instituto de Biotecnología-IABIMO, INTA-CONICET, INTA Castelar, Buenos Aires, Argentina
| | - J E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA-IMYZA), Castelar, Argentina
| | - M V Criado
- Facultad de Agronomía, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - R Molina
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas, INIAB-CONICET, Río Cuarto, Argentina
| | - F Cassán
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas, INIAB-CONICET, Río Cuarto, Argentina
| |
Collapse
|
9
|
Díaz-Rodríguez AM, Salcedo Gastelum LA, Félix Pablos CM, Parra-Cota FI, Santoyo G, Puente ML, Bhattacharya D, Mukherjee J, de los Santos-Villalobos S. The Current and Future Role of Microbial Culture Collections in Food Security Worldwide. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.614739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Food security is the pillar of nutritional wellbeing for food availability, and is necessary to satisfy all physiological needs to thus maintain the general wellbeing of populations. However, global agricultural deficiencies occur due to rapid population growth, causing an increase in competition for resources; such as water, land, and energy, leading to the overexploitation of agro-ecosystems, and the inability to produce a suitable quantity of efficient food. Therefore, the development of sustainable agro-biotechnologies is vital to increase crop yield and quality, reducing the negative impacts caused by intensive non-sustainable agricultural practices. In this way, the genetic and metabolic diversity of soil and plant microbiota in agro-ecosystems are a current and promising alternative to ensure global food security. Microbial communities play an important role in the improvement of soil fertility and plant development by enhancing plant growth and health through several direct and/or indirect mechanisms. Thus, the bio-augmentation of beneficial microbes into agro-ecosystems not only generates an increase in food production but also mitigates the economic, social, and environmental issues of intensive non-sustainable agriculture. In this way, the isolation, characterization, and exploitation of preserved beneficial microbes in microbial culture collections (MCC) is crucial for the ex situ maintenance of native soil microbial ecology focused on driving sustainable food production. This review aims to provide a critical analysis of the current and future role of global MCC on sustainable food security, as providers of a large number of beneficial microbial strains with multiple metabolic and genetic traits.
Collapse
|
10
|
Paço A, da-Silva JR, Torres DP, Glick BR, Brígido C. Exogenous ACC Deaminase Is Key to Improving the Performance of Pasture Legume-Rhizobial Symbioses in the Presence of a High Manganese Concentration. PLANTS 2020; 9:plants9121630. [PMID: 33255180 PMCID: PMC7760732 DOI: 10.3390/plants9121630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) toxicity is a very common soil stress around the world, which is responsible for low soil fertility. This manuscript evaluates the effect of the endophytic bacterium Pseudomonas sp. Q1 on different rhizobial-legume symbioses in the absence and presence of Mn toxicity. Three legume species, Cicer arietinum (chickpea), Trifolium subterraneum (subterranean clover), and Medicago polymorpha (burr medic) were used. To evaluate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase produced by strain Q1 in these interactions, an ACC deaminase knockout mutant of this strain was constructed and used in those trials. The Q1 strain only promoted the symbiotic performance of Rhizobium leguminosarum bv. trifolii ATCC 14480T and Ensifer meliloti ATCC 9930T, leading to an increase of the growth of their hosts in both conditions. Notably, the acdS gene disruption of strain Q1 abolished the beneficial effect of this bacterium as well as causing this mutant strain to act deleteriously in those specific symbioses. This study suggests that the addition of non-rhizobia with functional ACC deaminase may be a strategy to improve the pasture legume–rhizobial symbioses, particularly when the use of rhizobial strains alone does not yield the expected results due to their difficulty in competing with native strains or in adapting to inhibitory soil conditions.
Collapse
Affiliation(s)
- Ana Paço
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - José Rodrigo da-Silva
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - Denise Pereira Torres
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Clarisse Brígido
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
- Correspondence: ; Tel.: +351-266-760-878
| |
Collapse
|
11
|
Filipini LD, Pilatti FK, Meyer E, Ventura BS, Lourenzi CR, Lovato PE. Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Arch Microbiol 2020; 203:1033-1038. [PMID: 33140139 DOI: 10.1007/s00203-020-02092-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
Association of rhizobia with other plant growth-promoting bacteria (PGPB), such as Azospirillum, have the potential to increase crop yields. This work aimed to assess how Rhizobium tropici and Azospirillum brasilense alone or in combination, affect the growth and yields of common bean grains (Phaseolus vulgaris L.). In a field experiment, R. tropici and A. brasilense were inoculated on seeds, alone or in combination, associated or not with foliar spraying of A. brasilense. Shoot biomass, nitrogen accumulation, thousand-grain weight, and grain yield were evaluated. Application of A. brasilense, on seed or by foliar spraying, and seed inoculation of R. tropici, had an additive effect, increasing biomass and accumulated nitrogen, thousand-grain weight, and grain yield.
Collapse
Affiliation(s)
| | | | - Edenilson Meyer
- Rural Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Barbara Santos Ventura
- Rural Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Paulo Emílio Lovato
- Rural Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
12
|
Evaluation of growth and motility in non-photosynthetic Azospirillum brasilense exposed to red, blue, and white light. Arch Microbiol 2020; 202:1193-1201. [PMID: 32078698 DOI: 10.1007/s00203-020-01829-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/28/2019] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Azospirillum brasilense is a non-photosynthetic rhizobacterium that promotes the growth of plants. In this work, we evaluated the effects of different light qualities on the growth, viability, and motility in combination to other culture conditions such as temperature or composition of the culture medium. Exponential cultures of A. brasilense Az39 were inoculated by drop-plate method on nutritionally rich (LB) or chemically defined (MMAB) media in the presence or absence of Congo Red indicator (CR) and exposed continuously to white light (WL), blue light (BL), and red light (RL), or maintained in dark conditions (control). The exposure to BL or WL inhibited growth, mostly in LB medium at 36 °C. By contrast, the exposure to RL showed a similar behavior to the control. Swimming motility was inhibited by exposure to WL and BL, while exposure to RL caused only a slight reduction. The effects of WL and BL on plant growth-promoting rhizobacteria should be considered in the future as deleterious factors that could be manipulated to improve the functionality of foliar inoculants, as well as the bacterial effects on the leaf after inoculation.
Collapse
|