1
|
Kralj K, Chen Z. Arbuscular mycorrhizal fungi improve treatment performance and vegetative resilience in constructed wetlands exposed to microplastics. ENVIRONMENTAL RESEARCH 2025; 270:121049. [PMID: 39920963 DOI: 10.1016/j.envres.2025.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Microplastics are increasingly present in municipal wastewater and wastewater treatment plant effluent, prompting the use of constructed wetlands (CWs) for additional treatment. Enhancing CWs with arbuscular mycorrhizal fungi (AMF), known to aid nutrient removal and alleviate plant pollution stress, is gaining interest. This study is the first to examine the influence of two microplastic polymers (polyethylene microspheres and polyester microfibers) at concentrations of 0.1 and 1 mg/L on nutrient removal, plant health, and microbial composition in AMF-inoculated CWs. The results indicate that AMF inoculation combined with microplastic treatments significantly enhances nutrient removal in wetlands, achieving a 45.7% increase in total nitrogen removal and a 25.3% increase in phosphate removal. The effects of microplastics on plant health vary depending on the inoculation status, with an increase in lipid peroxidation (73.4% ± 25.4), and a decrease in the effective quantum yield of PSII (13.4% ± 5) observed in all treatments. High concentrations of polyester microfibers significantly altered the microbial community, increasing AMF colonization frequency and microbial richness, decreasing evenness and the abundance of denitrifying genera, and creating distinct clusters in beta diversity analysis. AMF inoculation maintained higher species richness and evenness, contributing to the resilience of CWs to microplastic pollution. Overall, AMF-inoculated wetlands and plants showed superior treatment performance, highlighting the successful bio-augmentation potential of this approach.
Collapse
Affiliation(s)
- Kristina Kralj
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
2
|
Sapiña-Solano A, Boscaiu M, Collado F, Vicente O, Ruiz-González MX. Effects of High Salinity and Water Stress on Wetland Grasses from the Spanish Mediterranean Coast. PLANTS (BASEL, SWITZERLAND) 2024; 13:1939. [PMID: 39065466 PMCID: PMC11281003 DOI: 10.3390/plants13141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The impacts of climate change are reaching unprecedented levels, heightening the risk of species loss and ecosystem service degradation. Wetlands, highly threatened ecosystems, serve vital ecological functions by capturing carbon, filtering water, and harbouring diverse wildlife. Coastal wetlands encounter many challenges, such as increased drought periods and escalating salinity levels, severely impacting plant biodiversity. Assessing how plants respond to various environmental stress factors is imperative for devising successful conservation strategies. In the present study, we examined three representative grass species found in various habitats within the Albufera Natural Park, close to the city of Valencia on the Spanish Mediterranean coast: Imperata cylindrica, Phragmites australis, and Saccharum ravennae. High salinity and water stress conditions were induced by subjecting the plants to irrigation with solutions containing 200, 400, 600, and 800 mM NaCl or withholding irrigation altogether to mimic coastal flooding and drought scenarios. The treatments were maintained until noticeable wilting of the plants occurred, at which point a range of stress biomarkers were determined, including photosynthetic pigments, ions, osmolytes, oxidative stress markers, and antioxidant metabolites, as well as antioxidant enzyme activities. Saccharum ravennae displayed the highest sensitivity to salt stress, whereas I. cylindrica appeared to be the most tolerant. The primary salinity tolerance mechanism observed in I. cylindrica and P. australis was a blockage of ion transport from the root zone to the aerial part, together with the salt-induced accumulation of proline and soluble sugars to high concentrations in the former. No significant effects of the water deficit treatment on the growth or biochemical parameters were observed for any of the analysed species. These findings offer valuable information for the effective management and conservation of coastal wetlands facing the challenges posed by climate change.
Collapse
Affiliation(s)
- Adrián Sapiña-Solano
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Francisco Collado
- Servici Devesa-Albufera, Vivers Municipals de El Saler, CV-500, km 8.5, 46012 Valencia, Spain;
| | - Oscar Vicente
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Mario X. Ruiz-González
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
3
|
Xu Z, Li K, Li W, Wu C, Chen X, Huang J, Zhang X, Ban Y. The positive effects of arbuscular mycorrhizal fungi inoculation and/or additional aeration on the purification efficiency of combined heavy metals in vertical flow constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68950-68964. [PMID: 35554837 DOI: 10.1007/s11356-022-20759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Inoculation with arbuscular mycorrhizal fungi (AMF) and additional aeration (AA), as two approaches to improve the functioning of treatment wetlands, can further promote the capacity of wetlands to purify pollutants. The extent to which, and mechanisms by which, AMF and AA purify wetlands polluted by combined heavy metals (HMs) are not well understood. In this study, the effects and mechanisms of AMF and/or AA on combined HMs removal in vertical flow constructed wetlands (VFCWs) with the Phragmites australis (reeds) were investigated at different HMs concentrations. The results showed that (1) AA improved the AMF colonization in VFCWs and AMF accumulated the combined HMs in their structures; (2) AMF inoculation and/or AA significantly promoted the reeds growth and antioxidant enzymes activities, thereby alleviating oxidative stress; (3) AMF inoculation and AA significantly enhanced the removal rates of Pb, Zn, Cu, and Cd under the stress of high combined HMs concentrations comparing to the control check (CK) treatment (autoclaved AMF inoculation and no aeration), which increased by 22.72%, 30.31%, 12.64%, and 50.22%, respectively; (4) AMF inoculation and/or AA significantly promoted the combined HMs accumulation in plant roots and substrates and altered the distribution of HMs at the subcellular level. We therefore conclude that AMF inoculation and/or AA in VFCWs improves the purification of combined HM-polluted water, and the VFCWs-reeds-AMF/AA associations exhibit great potential for application in remediation of combined HM-polluted wastewater.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chen Wu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Deepika S, Kothamasi D. Plant hosts may influence arbuscular mycorrhizal fungal community composition in mangrove estuaries. MYCORRHIZA 2021; 31:699-711. [PMID: 34477968 DOI: 10.1007/s00572-021-01049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
We investigated the role of plant host and soil variables in determining arbuscular mycorrhizal fungi (AMF) community composition in plant roots of two spatially separated mangrove estuaries on the rivers Aghanashini (14° 30' 30″ N-74° 22' 44″ E) and Gangavali (14° 35' 26″ N-74° 17' 51″ E) on the west coast of India. Both mangrove estuaries had similar plant species composition but differed in soil chemistries.We amplified a 550-bp portion of 18S small subunit (SSU) rDNA from mangrove plant roots and analysed it by restriction fragment length polymorphism (RFLP). Clones representing unique RFLP patterns were sequenced. A total of 736 clones were obtained from roots of seven and five plant species sampled at Aghanashini and Gangavali, respectively. AMF phylotype numbers in plant roots at Aghanashini (12) were higher than at Gangavali (9) indicating quantitative differences in the AMF community composition in plant roots at the two mangrove estuaries. Because both estuaries had similar plant species composition, the quantitative difference in AMF communities between the estuaries could be an attribute of the differences in rhizospheric chemistry between the two sites.Non-metric multidimensional scaling (NMDS) revealed overlap in the AMF communities of the two sites. Three and two AMF phylotypes had significant indicator value indices with specific hosts at Aghanashini and Gangavali, respectively. Environmental vector fitting to NMDS ordination did not reveal a significant effect of any soil variable on AMF composition at the two sites. However, significant effects of both plant hosts and sites were observed on rhizospheric P. Our results indicate that root AMF community composition may be an outcome of plant response to rhizospheric variables. This suggests that plant identity may have a primary role in shaping AMF communities in mangroves.
Collapse
Affiliation(s)
- Sharma Deepika
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India.
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, 110 002, India.
| | - David Kothamasi
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
- Strathclyde Centre for Environmental Law and Governance, University of Strathclyde, Glasgow, G1 1XQ, Scotland
| |
Collapse
|
5
|
Liu RC, Gao WQ, Srivastava AK, Zou YN, Kuča K, Hashem A, Abd_Allah EF, Wu QS. Differential Effects of Exogenous Glomalin-Related Soil Proteins on Plant Growth of Trifoliate Orange Through Regulating Auxin Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:745402. [PMID: 34616419 PMCID: PMC8488200 DOI: 10.3389/fpls.2021.745402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Multiple functions of glomalin released by arbuscular mycorrhizal fungi are well-recognized, whereas the role of exogenous glomalins including easily extractable glomalin-related soil protein (EE-GRSP) and difficultly extractable glomalin-related soil protein (DE-GRSP) is unexplored for plant responses. Our study was carried out to assess the effects of exogenous EE-GRSP and DE-GRSP at varying strengths on plant growth and chlorophyll concentration of trifoliate orange (Poncirus trifoliata) seedlings, along with changes in root nutrient acquisition, auxin content, auxin-related enzyme and transporter protein gene expression, and element contents of purified GRSP. Sixteen weeks later, exogenous GRSP displayed differential effects on plant growth (height, stem diameter, leaf number, and biomass production): the increase by EE-GRSP and the decrease by DE-GRSP. The best positive effect on plant growth occurred at exogenous EE-GRSP at ½ strength. Similarly, the GRSP application also differently affected total chlorophyll content, root morphology (total length, surface area, and volume), and root N, P, and K content: positive effect by EE-GRSP and negative effect by DE-GRSP. Exogenous EE-GRSP accumulated more indoleacetic acid (IAA) in roots, which was associated with the upregulated expression of root auxin synthetic enzyme genes (PtTAA1, PtYUC3, and PtYUC4) and auxin influx transporter protein genes (PtLAX1, PtLAX2, and PtLAX3). On the other hand, exogenous DE-GRSP inhibited root IAA and indolebutyric acid (IBA) content, associated with the downregulated expression of root PtTAA1, PtLAX1, and PtLAX3. Root IAA positively correlated with root PtTAA1, PtYUC3, PtYUC4, PtLAX1, and PtLAX3 expression. Purified EE-GRSP and DE-GRSP showed similar element composition but varied in part element (C, O, P, Ca, Cu, Mn, Zn, Fe, and Mo) concentration. It concluded that exogenous GRSP triggered differential effects on growth response, and the effect was associated with the element content of pure GRSP and the change in auxins and root morphology. EE-GRSP displays a promise as a plant growth biostimulant in citriculture.
Collapse
Affiliation(s)
- Rui-Cheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Wei-Qin Gao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | | | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
6
|
Gupta MM, Richardson DHS. Editorial: Anthropogenic impacts on symbiotic systems. Symbiosis 2021; 84:229-232. [PMID: 34483443 PMCID: PMC8405853 DOI: 10.1007/s13199-021-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Manju M Gupta
- Sri Aurobindo College, University of Delhi, Delhi, 110017 India
| | | |
Collapse
|