1
|
Eskandari A, Safavi SN, Sahrayi H, Alizadegan D, Eskandarisani M, Javanmard A, Tajik M, Sadeghi Z, Toutounch A, Yeganeh FE, Noorbazargan H. Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach. Colloids Surf B Biointerfaces 2025; 249:114529. [PMID: 39879671 DOI: 10.1016/j.colsurfb.2025.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. In-vitro antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against S. Aureus bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25-250 µg/ml for free Thymol and 12.5-100 µg/ml for free ZnONPs to 3.9-62.5 µg/ml for Thymol@UIO-66 and 1.95-15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.
Collapse
Affiliation(s)
- Alireza Eskandari
- CTERC, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nooshin Safavi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dorsa Alizadegan
- Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Alireza Javanmard
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-1503, United States
| | - Mohammadreza Tajik
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15219, United States
| | - Zohre Sadeghi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Disease, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Arvin Toutounch
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abdikakharovich SA, Rauf MA, Khattak S, Shah JA, Al-Keridis LA, Alshammari N, Saeed M, Igorevich SA. Exploring the antibacterial and dermatitis-mitigating properties of chicken egg white-synthesized zinc oxide nano whiskers. Front Cell Infect Microbiol 2023; 13:1295593. [PMID: 38099219 PMCID: PMC10719619 DOI: 10.3389/fcimb.2023.1295593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO-NPs) have garnered considerable interest in biomedical research primarily owing to their prospective therapeutic implications in combatting pathogenic diseases and microbial infections. The primary objective of this study was to examine the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) using chicken egg white (albumin) as a bio-template. Furthermore, this study aimed to explore the potential biomedical applications of ZnO NWs in the context of infectious diseases. Methods The NWs synthesized through biological processes were observed using electron microscopy, which allowed for detailed examination of their characteristics. The results of these investigations indicated that the NWs exhibited a size distribution ranging from approximately 10 to 100 nm. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) mapping analyses successfully corroborated the size, dimensions, and presence of biological constituents during their formation. In this study, XTT assay and confocal imaging were employed to provide evidence of the efficacy of ZnO-NWs in the eradication of bacterial biofilms. The target bacterial strains were Staphylococcus aureus and Escherichia coli. Furthermore, we sought to address pertinent concerns regarding the biocompatibility of the ZnO-NWs. This was achieved through comprehensive evaluation of the absence of cytotoxicity in normal HEK-293T and erythrocytes. Results The findings of this investigation unequivocally confirmed the biocompatibility of the ZnO-NWs. The biosynthesized ZnO-NWs demonstrated a noteworthy capacity to mitigate the dermatitis-induced consequences induced by Staphylococcus aureus in murine models after a therapeutic intervention lasting for one week. Discussion This study presents a comprehensive examination of the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) derived from chicken egg whites. These findings highlight the considerable potential of biosynthesized ZnO-NWs as a viable option for the development of therapeutic agents targeting infectious diseases. The antibacterial efficacy of ZnO-NWs against both susceptible and antibiotic-resistant bacterial strains, as well as their ability to eradicate biofilms, suggests their promising role in combating infectious diseases. Furthermore, the confirmed biocompatibility of ZnO-NWs opens avenues for their safe use in biomedical applications. Overall, this research underscores the therapeutic promise of ZnO-NWs and their potential significance in future biomedical advancements.
Collapse
Affiliation(s)
| | - Mohd A. Rauf
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | | | - Junaid Ali Shah
- Department of Dermatology, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
- College of Life Sciences, Jilin University, Changchun, China
| | | | - Nawaf Alshammari
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Sadykov Aslan Igorevich
- Department of Dermatology, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| |
Collapse
|
3
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Rehman FU, Paker NP, Khan M, Naeem M, Munis MFH, Rehman SU, Chaudhary HJ. Bio-fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. Vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. World J Microbiol Biotechnol 2023; 39:176. [PMID: 37115313 DOI: 10.1007/s11274-023-03612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Due to an inevitable disadvantage of chemical or physical synthesis routes, biosynthesis approach to nanoparticles, especially metallic oxide is attractive nowadays. Metallic oxides nanoparticles present a new approach to the control of plant pathogens. ZnO nanoparticles (ZNPs) have very important role in phytopathology. In current study, biosynthesized ZNPs were tested against two devastating bacterial pathogens including Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. ZNPs were produced using a new extract from the plant Picea smithiana using an environmentally friendly, cost-effective and simple procedure. Zinc acetate was added to P. smithiana extract, stirred and heated to 200 °C. The white precipitation at the bottom were clear indication of synthesis of nanoparticles, which were further dried by subjecting them at 450 °C. X-ray diffraction pattern determined that the ZNPs had a crystallite size of about 26 nm, Fourier transform infrared spectroscopy indicated a peak between 450 and 550 cm-1 and the particle size estimated by dynamic light scattering was about 25 nm on average. Scanning electron microscopic analysis indicated that the particles were hexagonal in shape 31 nm in diameter. Antibacterial tests showed ZNPs synthesized by P. smithiana resulted in clear inhibition zones of 20.1 ± 1.5 and 18.9 ± 1.5 mm and 44.74 and 45.63% reduction in disease severity and 78.40 and 80.91% reduction in disease incidence in X. compestris pv. vesicatoria and R. solanacearum respectively at concentration of 100 µg/ml. Our findings reveal that the concentration of ZNPs was important for their efficient antibacterial activity. Overall, the biosynthesized ZNPs have been found to have effective antimicrobial activities against bacterial wilt and bacterial leaf spot in tomato.
Collapse
Affiliation(s)
- Fazal Ur Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mohsin Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shafiq Ur Rehman
- Department of Botany, University of Okara, Okara, 56300, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
5
|
Ghezzi D, Boi M, Sassoni E, Valle F, Giusto E, Boanini E, Baldini N, Cappelletti M, Graziani G. Customized biofilm device for antibiofilm and antibacterial screening of newly developed nanostructured silver and zinc coatings. J Biol Eng 2023; 17:18. [PMID: 36879323 PMCID: PMC9987098 DOI: 10.1186/s13036-023-00326-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/19/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Bacterial colonisation on implantable device surfaces is estimated to cause more than half of healthcare-associated infections. The application of inorganic coatings onto implantable devices limits/prevents microbial contaminations. However, reliable and high-throughput deposition technologies and experimental trials of metal coatings for biomedical applications are missing. Here, we propose the combination of the Ionized Jet Deposition (IJD) technology for metal-coating application, with the Calgary Biofilm Device (CBD) for high-throughput antibacterial and antibiofilm screening, to develop and screen novel metal-based coatings. RESULTS The films are composed of nanosized spherical aggregates of metallic silver or zinc oxide with a homogeneous and highly rough surface topography. The antibacterial and antibiofilm activity of the coatings is related with the Gram staining, being Ag and Zn coatings more effective against gram-negative and gram-positive bacteria, respectively. The antibacterial/antibiofilm effect is proportional to the amount of metal deposited that influences the amount of metal ions released. The roughness also impacts the activity, mostly for Zn coatings. Antibiofilm properties are stronger on biofilms developing on the coating than on biofilms formed on uncoated substrates. This suggests a higher antibiofilm effect arising from the direct contact bacteria-coating than that associated with the metal ions release. Proof-of-concept of application to titanium alloys, representative of orthopaedic prostheses, confirmed the antibiofilm results, validating the approach. In addition, MTT tests show that the coatings are non-cytotoxic and ICP demonstrates that they have suitable release duration (> 7 days), suggesting the applicability of these new generation metal-based coatings for the functionalization of biomedical devices. CONCLUSIONS The combination of the Calgary Biofilm Device with the Ionized Jet Deposition technology proved to be an innovative and powerful tool that allows to monitor both the metal ions release and the surface topography of the films, which makes it suitable for the study of the antibacterial and antibiofilm activity of nanostructured materials. The results obtained with the CBD were validated with coatings on titanium alloys and extended by also considering the anti-adhesion properties and biocompatibility. In view of upcoming application in orthopaedics, these evaluations would be useful for the development of materials with pleiotropic antimicrobial mechanisms.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Marco Boi
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, University of Bologna, Chemical, Environmental and Materials Engineering, Via Terracini 28, 40131, Bologna, Italy
| | - Francesco Valle
- Institute of Nanostructured Materials, National Research Council (ISMN-CNR), Via Piero Gobetti, 101, 40129, Bologna, Italy
| | - Elena Giusto
- Blizard Institute, Queen Mary University of London, 4 Newark St, London, E1 2AT, UK
| | - Elisa Boanini
- Department of Chemistry, University of Bologna, Giacomo Ciamician", Via Selmi 2, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Gabriela Graziani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
6
|
Li J, Wang Y, Fan Z, Tang P, Wu M, Xiao H, Zeng Z. Toxicity of Tetracycline and Metronidazole in Chlorella pyrenoidosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3623. [PMID: 36834317 PMCID: PMC9964688 DOI: 10.3390/ijerph20043623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
Antibiotics have become a new kind of organic pollutant as they are widely used in the water environment of China. Tetracycline (TC) is a class of broad-spectrum antibiotics produced or semi-synthesized by actinomycetes. Metronidazole (MTZ) is the first generation of typical nitroimidazoles. The content of nitroimidazoles is relatively high in medical wastewater, and their ecotoxicity is worthy of attention because they are difficult to completely eliminate. In this paper, the effects of TC and MTZ on the growth, cell morphology, extracellular polymer and oxidative stress of Chlorella pyrenoidosa (C. pyrenoidosa) were studied, and the toxic interactions between TC and MTZ mixture components were analyzed. The results showed that the 96h-EC50 of TC and MTZ was 8.72 mg/L and 45.125 mg/L, respectively. The toxicity of TC to C. pyrenoidosa was higher than that of MTZ, and the combined toxicity effect of TC and MTZ was synergistic after the combined action of a 1:1 toxicity ratio. In addition, the algal cells of C. pyrenoidosa died to varying degrees, the membrane permeability of algal cells was increased, the membrane was damaged, the surface of algal cells exposed to higher concentration of pollutants was wrinkled, and their morphology was changed. The extracellular polymer of C. pyrenoidosa was affected by a change in concentration. The effect of pollutants on the reactive oxygen species (ROS) level and malondialdehyde (MDA) content of C. pyrenoidosa also had an obvious dose-effect relationship. This study contributes to the assessment of the possible ecological risks to green algae due to the presence of TC and MTZ in aquatic environments.
Collapse
Affiliation(s)
- Junrong Li
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Yingjun Wang
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Ziqi Fan
- Sichuan SEP Analytical Services Co., Ltd., Chengdu 610000, China
| | - Panyang Tang
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Mengting Wu
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Hong Xiao
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Zhenxing Zeng
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
7
|
Investigation of antibacterial activity and mechanism of T. spicata essential oil, and activation of the hydrosol formed as a by-product with UV. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Kumar R, Oves M, Ansari MO, Taleb MA, Baraka MAEF, Alghamdi MA, Makishah NHA. Biopolymeric Ni 3S 4/Ag 2S/TiO 2/Calcium Alginate Aerogel for the Decontamination of Pharmaceutical Drug and Microbial Pollutants from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3642. [PMID: 36296832 PMCID: PMC9609712 DOI: 10.3390/nano12203642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of pharmaceutical drugs and microbes in the water is leading to the development of drug resistant microbes. Therefore, efficient materials that can remove or inactivate the drug and microbe contaminants are required. In this work, nickel sulfide/calcium alginate (Ni3S4/CA), silver sulfide/calcium alginate (Ag2S/CA), modified titanium dioxide/calcium alginate (TiO2/CA), and Ni3S4/Ag2S/TiO2/calcium alginate (Ni3S4/Ag2S/TiO2/CA) aerogels have been synthesized for the removal of the oxytetracycline (OTC) drug and microbial contaminants from real beverage industry wastewater. The results revealed that Ni3S4/Ag2S/TiO2/CA aerogel is highly efficient for OTC adsorption and inactivation of microbes compared to Ni3S4/CA, Ag2S/CA and TiO2/CA aerogels. The OTC adsorption depends greatly on the solution pH, and optimum OTC removal was observed at pH 6 in its zwitterionic (OTC±) form. The formation of H-bonding and n-π electron donor-acceptors is possible to a considerable extent due to the presence of the double bond benzene ring, oxygen and nitrogen, sulfur-containing functional groups on the OTC molecules, and the Ni3S4/Ag2S/TiO2/CA aerogel. Based on the statistical analysis, root-mean-square deviation (RMSD), chi square (χ2) values, and higher correlation coefficient (R2) values, the Redlich−Peterson isotherm model and Elovich kinetic model are most suited to modelling the OTC adsorption onto Ni3S4/Ag2S/TiO2/CA. The prepared aerogels’ excellent antimicrobial activity is observed in the dark and with solar light irradiation. The zone of inhibition analysis revealed that the antimicrobial activity of the aerogels is in the following order: Ni3S4/Ag2S/TiO2/CA > TiO2/CA > Ag2S/CA > Ni3S4/CA, respectively. Moreover, the antimicrobial results demonstrated that reactive oxygen species, electrons, and active radical species are responsible for growth inhibition and killing of the microbes. These results indicated that Ni3S4/Ag2S/TiO2/CA aerogel is highly efficient in decontaminating pollutants from wastewater.
Collapse
Affiliation(s)
- Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Oves
- Central of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Md. Abu Taleb
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Abou El-Fetouh Baraka
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naief Hamoud Al Makishah
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Butrimienė R, Kalnaitytė A, Januškaitė E, Bagdonas S, Jurgelėnė Ž, Butkauskas D, Virbickas T, Montvydienė D, Kazlauskienė N, Skrodenytė-Arbačiauskienė V. Interactions of semiconductor Cd-based quantum dots and Cd 2+ with gut bacteria isolated from wild Salmo trutta fry. PeerJ 2022; 10:e14025. [PMID: 36128199 PMCID: PMC9482770 DOI: 10.7717/peerj.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background With the rapid development of nanotechnology, more and more nanoproducts are being released into the environment where they may both pose ecological risks and be toxic to living organisms. The ecotoxicological impact of quantum dots (QDs), a class of nanoparticles (NPs), on aquatic organisms is becoming an emerging issue, this due to their nano-specific properties, to the physico-chemical transformation in the environment and to the possible release of toxic metals from their structure such as Cd. Methods In this work, (i) spectroscopic measurements of commercially available Cd-based QDs (CdSe/ZnS-COOH) were made at various pH values (5.0 and 7.0) to study their interactions (at a concentration of 4 nm) with various strains of Gram-positive and Gram-negative gut bacteria after short-term exposure and (ii) the antibacterial efficacy of QDs and Cd2+ (at a concentration 0.09-3.56 mM) against gut bacteria isolated from wild freshwater Salmo trutta fry was studied at different temperatures (15 °C and 25 °C) and pH values (5.0 and 7.0) by applying a well-established disc diffusion assay. Results Twenty-six gut bacterial isolates from wild Salmo trutta fry were identified as Aeromonas spp., A. popoffii, A. salmonicida, A. sobria, Carnobacterium maltaromaticum, Buttiauxella sp., Listeria sp., Microbacterium sp., Shewanella putrefaciens and Serratia sp. Cd-based (CdSe/ZnS-COOH) QDs at a concentration of 4 nm were found to be stable in aqueous media (with pH 7.0) or starting to form aggregates (at pH 5.0), thus, apparently, did not release heavy metals (HMs) into the media over 48 h in conditions of light or dark and did not show antibacterial efficacy on the gut bacteria isolated from wild Salmo trutta fry after short-term (9 h and 48 h) incubations. Cd2+ was found to produce significant dose-dependent toxic effects on bacterial growth, and the size of the inhibition zones on some of the tested strains significantly correlated with temperature. The most sensitive and the most resistant to Cd2+ were the Gram-positive bacteria, for which the minimum inhibitory concentration (MIC) values of Cd2+ were 0.09-0.27 mM and 3.11-3.29 mM respectively and varied significantly between the tested temperatures (15 °C and 25 °C). The MIC values of Cd2+ for the Gram-negative bacteria (18 out of 22 strains) ranged from 0.44 to 0.71 mM and did not differ significantly between the tested temperatures. Among the selected Gram-positive and Gram-negative strains, those with the higher sensitivity towards Cd2+ also revealed relatively stronger signals of QDs photoluminescence (PL) when transferred after incubation into fresh medium without QDs. In addition, the formation of endogenous metalloporphyrins observed spectroscopically in some bacterial strains indicates certain differences in metabolic activity that may play a protective role against potential oxidative damage.
Collapse
Affiliation(s)
| | - Agnė Kalnaitytė
- Laser Research Center, Physics Faculty, Vilnius University, Vilnius, Lithuania
| | - Emilija Januškaitė
- Laser Research Center, Physics Faculty, Vilnius University, Vilnius, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Physics Faculty, Vilnius University, Vilnius, Lithuania
| | - Živilė Jurgelėnė
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | | | - Tomas Virbickas
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | | | | | | |
Collapse
|
10
|
Tshangana CS, Muleja AA, Kuvarega AT, Mamba BB. The synergistic effect of peracetic acid activated by graphene oxide quantum dots in the inactivation of E. coli and organic dye removal with LED reactor light. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:268-281. [PMID: 35354352 DOI: 10.1080/10934529.2022.2056385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This study presents a low-impact process that uses the synergy of peracetic acid (PAA) and graphene oxide quantum GQDs to degrade poorly biodegradable organic compounds and potentially substitute chlorination in wastewater treatment. The role of GQDs in GQDs/PAA activity and the effect of GQDs loading were examined. The results showed that increasing GQDs loading in the GQDs/PAA system greatly improved the photodegradation efficiency. Conversely, increasing the PAA concentration slightly enhanced efficiency due to few active sites being available. GQDs acted as catalysts and radical scavenging experiments confirmed that the degradation occurred via generation of hydroxyl (•OH) and peroxy (CH3C(=O)OO•)) radicals. A probable degradation mechanism of the organic dye was presented based on the reaction by-products detected after HPLC-MS studies. The E. coli inactivation mechanism was elucidated by monitoring the morphological changes of E. coli using scanning microscopy. The proposed antimicrobial mechanism includes the initial diffusion of PAA through the cell membrane which caused damage and induced cellular matter leakage, resulting in cell death. Bacterial regrowth studies confirmed GQDs/PAA were able to bypass the natural mechanisms of microorganisms that enables them to repair any damages in their DNA.
Collapse
Affiliation(s)
- Charmaine Sesethu Tshangana
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Adolph Anga Muleja
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| |
Collapse
|
11
|
Balmuri SR, Phandanouvong-Lozano V, House SD, Yang JC, Niepa TH. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:1868-1878. [DOI: 10.1021/acsabm.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Shahri NNM, Taha H, S A Hamid MH, Kusrini E, Lim JW, Hobley J, Usman A. Antimicrobial activity of silver sulfide quantum dots functionalized with highly conjugated Schiff bases in a one-step synthesis. RSC Adv 2022; 12:3136-3146. [PMID: 35425280 PMCID: PMC8979330 DOI: 10.1039/d1ra08296e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the present paper, low-dimensional Ag2S QDs were fabricated for the first time, with four different dithiocarbazate derivative Schiff bases (SB) as capping agents in a one-pot synthesis. These SB-capped Ag2S QDs were almost spherical with an average size range of 4.0 to 5.6 nm, which is slightly smaller than conventional thioglycolic acid (TGA)-capped Ag2S QDs. We demonstrate that the growth of Gram-positive bacteria (Bacillus subtillus and Staphylococcus aureus), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and a prevalent fungal pathogen (Candida albicans) are inhibited more when the bacterial and fungal cells were nurtured with the synthesized SB-Ag2S QDs, compared with TGA-Ag2S QDs or free unbound Schiff bases. The minimum inhibitory concentration (MIC) results confirmed that even low concentrations of SB-Ag2S QDs were able to inhibit bacterial (MIC 5-75 μg mL-1) and fungal growth (MIC 80-310 μg mL-1), and in some cases they performed better than streptomycin (8-25 μg mL-1). Lethality bioassay results confirmed that SB-Ag2S QDs were not toxic to brine shrimp (Artemia salina). The results show that capping agents are essential in the design of functional Ag2S QDs, and highlight that Schiff bases provide an excellent opportunity to optimize the biological activities of silver based QDs.
Collapse
Affiliation(s)
| | - Hussein Taha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE1410 Brunei Darussalam
| | - Malai Haniti S A Hamid
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE1410 Brunei Darussalam
| | - Eny Kusrini
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus Baru UI-Depok 16424 Indonesia
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS 32610 Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University 1, University Road Tainan City 701 Taiwan ROC
| | - Anwar Usman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE1410 Brunei Darussalam
| |
Collapse
|
13
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Kwun MS, Lee DG. Apoptosis-like death-inducing property of tachyplesin I in Escherichia coli. J Basic Microbiol 2021; 61:795-807. [PMID: 34337763 DOI: 10.1002/jobm.202100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022]
Abstract
Antimicrobial peptide (AMP) derived from the horseshoe crab, tachyplesin I (KWCFRVCYRGICYRRCR-NH2 ), displayed the apparent antimicrobial activity with low cytotoxicity, suggesting its efficacy as an attractive agent but still lacks the understandings regarding its mechanism(s). Hence, the study focused on investigating the antibacterial mode of action of tachyplesin I against Escherichia coli. Based on the reactive oxygen species generation displayed in several antimicrobial effects, the detection of superoxide anion and nitric oxide were verified after tachyplesin I treatment. Substantial increment of two molecules was followed by the imbalance in intracellular ion concentration, noticeably magnesium and calcium. The series of stages led to hydroxyl radical generation with reduced glutathione, followed by damage in DNA due to oxidative stress. Eventually, the apoptosis-like death in E. coli was monitored in DNA fragmentation-dependent manner due to the tachyplesin I treatment, verified by membrane depolarization, caspase-like protein activation, and phosphatidylserine exposure. Accordingly, tachyplesin I induces apoptosis-like death in E. coli, suggesting the potential of being a candidate for regulating bacterial infection.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Ren T, Zhu H, Tian L, Yu Q, Li M. Candida albicans infection disturbs the redox homeostasis system and induces reactive oxygen species accumulation for epithelial cell death. FEMS Yeast Res 2021; 20:5643898. [PMID: 31769804 DOI: 10.1093/femsyr/foz081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a common pathogenic fungus with high mortality in immunocompromised patients. However, the mechanism by which C. albicans invades host epithelial cells and causes serious tissue damage remains to be further investigated. In this study, we established the C. albicans-293T renal epithelial cell interaction model to investigate the mechanism of epithelial infection by this pathogen. It was found that C. albicans infection causes severe cell death and reactive oxygen species (ROS) accumulation in epithelial cells. Further investigations revealed that C. albicans infection might up-regulate expression of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX), inhibit the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and suppress the p38-Nrf2-heme oxygenase-1 (HO-1) pathway which plays an important role in the elimination of intracellular ROS. Furthermore, epithelial cell death caused by the fungal infection could be strikingly alleviated by addition of the antioxidant agent glutathione, indicating the critical role of ROS accumulation in cell death caused by the fungus. This study revealed that disturbance of the redox homeostasis system and ROS accumulation in epithelial cells is involved in cell death caused by C. albicans infection, which sheds light on the application of antioxidants in the suppression of tissue damage caused by fungal infection.
Collapse
Affiliation(s)
- Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Lei Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Tenea GN, Hurtado P. Next-Generation Sequencing for Whole-Genome Characterization of Weissella cibaria UTNGt21O Strain Originated From Wild Solanum quitoense Lam. Fruits: An Atlas of Metabolites With Biotechnological Significance. Front Microbiol 2021; 12:675002. [PMID: 34163450 PMCID: PMC8215347 DOI: 10.3389/fmicb.2021.675002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The whole genome of Weissella cibaria strain UTNGt21O isolated from wild fruits of Solanum quitoense (naranjilla) shrub was sequenced and annotated. The similarity proportions based on the genus level, as a result of the best hits for the entire contig, were 54.84% with Weissella, 6.45% with Leuconostoc, 3.23% with Lactococcus, and 35.48% no match. The closest genome was W. cibaria SP7 (GCF_004521965.1) with 86.21% average nucleotide identity (ANI) and 3.2% alignment coverage. The genome contains 1,867 protein-coding genes, among which 1,620 were assigned with the EggNOG database. On the basis of the results, 438 proteins were classified with unknown function from which 247 new hypothetical proteins have no match in the nucleotide Basic Local Alignment Search Tool (BLASTN) database. It also contains 78 tRNAs, six copies of 5S rRNA, one copy of 16S rRNA, one copy of 23S rRNA, and one copy of tmRNA. The W. cibaria UTNGt21O strain harbors several genes responsible for carbohydrate metabolism, cellular process, general stress responses, cofactors, and vitamins, conferring probiotic features. A pangenome analysis indicated the presence of various strain-specific genes encoded for proteins responsible for the defense mechanisms as well as gene encoded for enzymes with biotechnological value, such as penicillin acylase and folates; thus, W. cibaria exhibited high genetic diversity. The genome characterization indicated the presence of a putative CRISPR-Cas array and five prophage regions and the absence of acquired antibiotic resistance genes, virulence, and pathogenic factors; thus, UTNGt21O might be considered a safe strain. Besides, the interaction between the peptide extracts from UTNGt21O and Staphylococcus aureus results in cell death caused by the target cell integrity loss and the release of aromatic molecules from the cytoplasm. The results indicated that W. cibaria UTNGt21O can be considered a beneficial strain to be further exploited for developing novel antimicrobials and probiotic products with improved technological characteristics.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - Pamela Hurtado
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
17
|
Peptide Extracts from Native Lactic Acid Bacteria Generate Ghost Cells and Spheroplasts upon Interaction with Salmonella enterica, as Promising Food Antimicrobials. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6152356. [PMID: 33083475 PMCID: PMC7559518 DOI: 10.1155/2020/6152356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
Protecting foods from contamination applying peptides produced by lactic acid bacteria is a promising strategy to increase the food quality and safety. Interacting with the pathogen membranes might produce visible changes in shape or cell wall damage. Previously, we showed that the peptides produced by Lactobacillus plantarum UTNGt2, Lactobacillus plantarum UTNCys5-4, and Lactococcus lactis subsp. lactis UTNGt28 exhibit a broad spectrum of antibacterial activity against several foodborne pathogens in vitro. In this study, their possible mode of action against the commensal microorganism Salmonella enterica subsp. enterica ATCC51741 was investigated. The target membrane permeability was determined by detection of beta-galactosidase release from ONPG (o-nitro-phenyl-L-D-galactoside) substrate and changes in the whole protein profile indicating that the peptide extracts destroy the membrane integrity and may induce breaks in membrane proteins to some extent. The release of aromatic molecules such as DNA/RNA was detected after the interaction of Salmonella with the peptide extract. Transmission electronic microscopy (TEM) micrographs depicted at least four simultaneous secondary events after the peptide extract treatment underlying their antimicrobial actions, including morphological alterations of the membrane. Spheroplast and filament formation, vacuolation, and DNA relaxation were identified as the principal events from the Gt2 and Cys5-4 peptide extracts, while Gt28 induced the formation of ghost cells by release of cytoplasmic content, filaments, and separation of cell envelope layers. Gel retarding assays indicate that the Gt2 and Gt28 peptide extracts are clearly binding the Salmonella DNA, while Cys5-4 partially interacted with Salmonella genomic DNA. These results increased our knowledge about the inhibitory mechanism employed by several peptide extracts from native lactic acid bacteria against Salmonella. Further, we shall develop peptide-based formulation and evaluate their biocontrol effect in the food chains.
Collapse
|
18
|
Tenea GN, Hurtado P, Ortega C. A Novel Weissella cibaria Strain UTNGt21O Isolated from Wild Solanum quitoense Fruit: Genome Sequence and Characterization of a Peptide with Highly Inhibitory Potential toward Gram-Negative Bacteria. Foods 2020; 9:E1242. [PMID: 32899506 PMCID: PMC7555684 DOI: 10.3390/foods9091242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
A novel Weissella cibaria strain UTNGt21O from the fruit of the Solanum quitoense (naranjilla) shrub produces a peptide that inhibits the growth of both Salmonella enterica subsp. enterica ATCC51741 and Escherichia coli ATCC25922 at different stages. A total of 31 contigs were assembled, with a total length of 1,924,087 bases, 20 contig hits match the core genome of different groups within Weissella, while for 11 contigs no match was found in the database. The GT content was 39.53% and the genome repeats sequences constitute around 186,760 bases of the assembly. The UTNGt21O matches the W. cibaria genome with 83% identity and no gaps (0). The sequencing data were deposited in the NCBI Database (BioProject accessions: PRJNA639289). The antibacterial activity and interaction mechanism of the peptide UTNGt21O on target bacteria were investigated by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with different concentrations (1×, 1.5× and 2× MIC) of the peptide applied alone or in combination with chelating agent ethylenediaminetetraacetic acid (EDTA) at 20 mM. The results indicated a bacteriolytic effect at both early and late target growth at 3 h of incubation and total cell death at 6 h when EDTA was co-inoculated with the peptide. Based on BAGEL 4 (Bacteriocin Genome Mining Tool) a putative bacteriocin having 33.4% sequence similarity to enterolysin A was detected within the contig 12. The interaction between the peptide UTNGt21O and the target strains caused permeability in a dose-, time- response manner, with Salmonella (3200 AU/mL) more susceptible than E. coli (6400 AU/mL). The results indicated that UTNGt21O may damage the integrity of the cell target, leading to release of cytoplasmic components followed by cell death. Differences in membrane shape changes in target cells treated with different doses of peptide were observed by transmission electronic microscopy (TEM). Spheroplasts with spherical shapes were detected in Salmonella while larger shaped spheroplasts with thicker and deformed membranes along with filamentous cells were observed in E. coli upon the treatment with the UTNGt21O peptide. These results indicate the promising potential of the putative bacteriocin released by the novel W. cibaria strain UTNGt21O to be further tested as a new antimicrobial substance.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Av. 17 de Julio s-21 Barrio El Olivo, 100150 Ibarra, Ecuador; (P.H.); (C.O.)
| | | | | |
Collapse
|
19
|
Gupta A, Prasad P, Gupta S, Sasmal PK. Simultaneous Ultrasensitive Detection and Elimination of Drug-Resistant Bacteria by Cyclometalated Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35967-35976. [PMID: 32662979 DOI: 10.1021/acsami.0c11161] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial resistance has become a major threat to public health due to the rampant and empirical use of antibiotics. Rapid diagnosis of bacteria with the desired sensitivity and selectivity still, however, remains an open challenge. We report a special class of water-soluble metal-based aggregation-induced emission luminogens (AIEgens), namely, cyclometalated iridium(III) polypyridine complexes of the type [Ir(PQ)2(N^N)]Cl (1-3), where PQ = 2-phenylquinoline and N^N = 2,2'-bipyridine derivatives, that demonstrate dual capability for detection and elimination of drug-resistant bacteria in aqueous solutions. These AIEgens exhibit selective and rapid sensing of endotoxins, such as lipopolysaccharides (LPS) and lipoteichoic acid (LTA) released by the bacteria, with a detection limit in the lower nanomolar range. Targeting these naturally amplified biomarkers (approximately 1 million copies per cell) by iridium(III) complexes induces strong AIE in the presence of different Gram-negative and Gram-positive bacteria including carbapenem-resistant A. baumannii (CRAB) and methicillin-resistant S. aureus (MRSA) at concentrations as low as 1.2 CFU/mL within 5 min in spiked water samples. Detection of bacteria by the complexes is also visible to the naked eye at higher (108 CFU/mL) cell concentrations. More notably, complexes 1 and 2 show potent antibacterial activity against drug-resistant bacteria with low minimum inhibitory concentrations (MICs) ≤ 5 μg/mL (1-4 μM) via ROS generation and cell membrane disintegrity. To the best of our knowledge, this work is the "first-in-class" example of a metal-based theranostic system that integrates selective, sensitive, rapid, naked-eye, wash-free, and real-time detection of bacteria using broad-spectrum antibiotics into a single platform. This dual capability of AIEgens makes them ideal scaffolds for monitoring bacterial contamination in aqueous samples and pharmaceutical applications.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Puja Prasad
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
20
|
Ma TF, Chen YP, Fang F, Yan P, Shen Y, Kang J, Nie YD. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138284. [PMID: 32276046 DOI: 10.1016/j.scitotenv.2020.138284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aerobic denitrification process is a promising and cost-effective alternative to the conventional nitrogen removal process. Widely used ZnO nanoparticles (NPs) will inevitably reach wastewater treatment plants, and cause adverse impacts on aerobic denitrification and nitrogen removal. Therefore, a full understanding of the responses and adaption of aerobic denitrifiers to ZnO NPs is essential to develop effective strategies to reduce adverse effects on wastewater treatment. In this study, the responses and adaption to ZnO NPs were investigated of a wild type strain (WT) and a resistant type strain (Re) of aerobic denitrifying bacteria Enterobacter cloacae strain HNR. When exposed to 0.75 mM ZnO NPs, the nitrate removal efficiency of Re was 11.2% higher than that of WT. To prevent ZnO NPs entering cells by adsorption, the production of extracellular polymeric substances (EPS) of WT and Re strains increased 13.2% and 43.9%, respectively. The upregulations of amino sugar and carbohydrate-related metabolism contributed to the increase of EPS production, and the increased nitrogen metabolism contributed to higher activities of nitrate and nitrite reductases. Interestingly, cationic antimicrobial peptide resistance contributed to resist Zn (II) released by ZnO NPs, and many antioxidative stress-related metabolism pathways were upregulated to resist the oxidative stress resulting from ZnO NPs. These findings will guide efforts to improve the aerobic denitrification process in an environment polluted by NPs, and promote the application of aerobic denitrification technologies.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - Jia Kang
- North China Univ Water Resources & Elect Power, Key Lab Water Environment Simulatation & Governance Henan, Zhengzhou 460046, Henan, China
| | - Yu-Dong Nie
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
21
|
Zhou X, He G, Ma J, Tang M, Tian G, Gong X, Zhang H, Kui L. Protective Effect of a Novel Polysaccharide from Lonicera japonica on Cardiomyocytes of Mice Injured by Hydrogen Peroxide. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5279193. [PMID: 32685499 PMCID: PMC7333056 DOI: 10.1155/2020/5279193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Lonicera japonica is a traditional Chinese herbal medicine with antioxidation, anti-inflammatory, antibacterial, and immunoregulation functions. A method to isolate polysaccharides from Lonicera japonica (LJP) has been reported previously by our group. We also reported previously that LJP was consisted of 6 types of monosaccharides and had the characteristic absorption of typical polysaccharides. In this study, we investigated the protective effect of LJP on cardiomyocytes of mice injured by hydrogen peroxide (H2O2). The results showed that LJP can increase the cardiomyocyte viability and the activities of the enzyme (SOD, CAT, GSH-Px, AST, CPK, and LDH) in cardiomyocytes of mice injured by hydrogen peroxide. The results of intracellular ROS contents showed that a high dose (40 μg mL-1) of LJP had the best effects on protecting the cardiomyocytes of mice injured by H2O2. In addition, the measurement results of the cardiomyocyte apoptosis and the activity of caspase-3, caspase-8, and caspase-9 in cardiomyocytes confirmed this conclusion from another perspective.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Key Laboratory of Polysaccharide Drug Engineering of Anhui, Wannan Medical College, Wuhu, Anhui 241000, China
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou, Zhejiang 310052, China
| | - Gui He
- Guangzhou LBP Medicine Science and Technology Co. Ltd., 510663 Guangzhou, China
| | - Jinming Ma
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Min Tang
- Genesis (Beijing) Co. Ltd., Beijing, China
| | - Geng Tian
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xun Gong
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Huajun Zhang
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 116026, China
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
22
|
Peptide-Based Formulation from Lactic Acid Bacteria Impairs the Pathogen Growth in Ananas Comosus (Pineapple). COATINGS 2020. [DOI: 10.3390/coatings10050457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Worldwide, street vending commerce has grown exponentially, representing in some countries, including Ecuador, a significant proportion of food consumed by the urban population. Pineapple is one of the common fruits sold as ready-to-eat slices by ambulant vendors in the street or on public transport at risk of contamination by various microorganisms. Previously, we selected Lactobacillus plantarum UTNCys5-4 and Lactococcus lactis subsp. lactis Gt28 strains producing peptides with high capacity to inhibit pathogen growth in vitro. In this study, the effect of different edited formulations containing a mixture of Cys5-4/Gt28 peptides was evaluated in vitro and ex vitro against a pathogenic cocktail containing E. coli (2), Salmonella (2) and Shigella (1). The growth of bacterial cocktail co-inoculated with cell-free supernatant containing peptides (formulation T1) and precipitated peptides (formulation T6), in a ratio of Cys5-4/Gt28:1:1 (v/v), results in a decrease of total cell viability with 1.85 and 1.2 log CFU/mL orders of magnitude at 6 h of incubation. About the same decrease (1.9 log CFU/g) was observed when pineapple slices artificially inoculated with the pathogenic cocktail were coated with T1 formulation, indicating the capacity to diminish simultaneous pathogens in situ, thus demonstrating its great biological control and protection. However, the E. coli cell counts reduced by 2.08 log CFU/g while Salmonella and Shigella cell counts reduced by 1.43 and 1.91 log CFU/g, respectively, at 5 days of refrigeration. In the untreated pineapple slices, the total cell density was maintained during storage, suggesting the adaptation of the pathogens to the fruit matrix. The peptide-based formulation exerted a bacteriolytic mode of action inducing pathogenic cell death. The results indicate that coating pineapple slices with peptide-based formulation is a promising approach to protect them from further contamination by microbial spoilage as well as an alternative to increase the food safety.
Collapse
|
23
|
Wang Z, Zhai X, Sun Y, Yin C, Yang E, Wang W, Sun D. Antibacterial activity of chlorogenic acid-loaded SiO 2 nanoparticles caused by accumulation of reactive oxygen species. NANOTECHNOLOGY 2020; 31:185101. [PMID: 31995525 DOI: 10.1088/1361-6528/ab70fb] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diseases caused by pathogenic bacilli pose an increasing threat to human health. A common feature of these bacteria is a complete cell wall; therefore, drugs that can penetrate this protective barrier could be used as a novel approach for treating these infections. Here we present a simple method for synthesizing a silica mesoporous material loaded with cadmium selenide (CdSe) and chlorogenic acid. Using UV-visible, fluorescence, and infrared imaging in combination with transmission electron microscopy, it was shown that CdSe and chlorogenic acid could be successfully embedded in the mesopores of silica nanoparticles (CSC NPs), and these NPs presented with a strong fluorescence, uniform size, and good dispersion. Additionally, the results of these analyses indicated that the fluorescence of the CSC NPs was localized within the cells of Escherichia coli and Bacillus subtilis, signifying that these NPs could breach the cell wall and enter the cells of these two bacilli. Additional assessments found that these CSC NPs inhibited the proliferation of the bacteria by disrupting the cell wall, and this was most likely due to the overproduction of reactive oxygen species induced by chlorogenic acid. Importantly, histopathology analysis indicated that the CSC NPs had limited side effects and high biocompatibility.
Collapse
Affiliation(s)
- Zekun Wang
- School of life sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Singh R, Cheng S, Singh S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech 2020; 10:66. [PMID: 32030335 PMCID: PMC6980014 DOI: 10.1007/s13205-020-2054-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 11/29/2022] Open
Abstract
Extensive use of nanomaterials in consumer products has invoked the concerns about interactions of nanoparticles with living organisms (including microorganisms). Zinc oxide nanoparticles (ZnO NPs) are well known for their antibacterial effect due to reactive oxygen species (ROS) generation. Therefore, their release into the environment is expected to raise major concern towards ecotoxicity. In the present study, we have studied the toxic effect of ZnO NPs on Deinococcus radiodurans, which is well known to show extraordinary resistant from the damaging effects of radiation. Result showed that ZnO NPs are significantly internalized into the bacterial cells and induce concentration-dependent toxicity with membrane damage. Genotoxicity studies revealed that ZnO exposure induces significant DNA damage to bacterial cells. All the observations evidenced that ZnO NPs induce significant ROS generation, protein oxidation and DNA damage with concomitant thiol depletion. Further, gene expression analysis showed that several DNA repair genes and metabolic pathway-related genes are downregulated upon ZnO NP exposure, with simultaneous increase in the expression of DNA damage response genes. Thus, the present study on toxicity of ZnO NPs on a model organism, D. radiodurans, inflicts the possible mechanism behind ZnO NP-mediated toxic effects on various other microbial organisms.
Collapse
Affiliation(s)
- Ragini Singh
- School of Agriculture Science, Liaocheng University, Liaocheng, Shandong China
| | - Shuang Cheng
- School of Agriculture Science, Liaocheng University, Liaocheng, Shandong China
| | - Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Central campus, Navrangpura, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
25
|
Mei L, Wang Q. Advances in Using Nanotechnology Structuring Approaches for Improving Food Packaging. Annu Rev Food Sci Technol 2020; 11:339-364. [PMID: 31905018 DOI: 10.1146/annurev-food-032519-051804] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in food packaging materials largely rely on nanotechnology structuring. Owing to several unique properties of nanostructures that are lacking in their bulk forms, the incorporation of nanostructures into packaging materials has greatly improved the performance and enriched the functionalities of these materials. This review focuses on the functions and applications of widely studied nanostructures for developing novel food packaging materials. Nanostructures that offer antimicrobial activity, enhance mechanical and barrier properties, and monitor food product freshness are discussed and compared. Furthermore, the safety and potential toxicity of nanostructures in food products are evaluated by summarizing the migration activity of nanostructures to different food systems and discussing the metabolism of nanostructures at the cellular level and in animal models.
Collapse
Affiliation(s)
- Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20740, USA;
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20740, USA;
| |
Collapse
|
26
|
Wu J, Abbas HMK, Li J, Yuan Y, Liu Y, Wang G, Dong W. Cell Membrane-Interrupting Antimicrobial Peptides from Isatis indigotica Fortune Isolated by a Bacillus subtilis Expression System. Biomolecules 2019; 10:E30. [PMID: 31878275 PMCID: PMC7023251 DOI: 10.3390/biom10010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The situation of drug resistance has become more complicated due to the scarcity of plant resistance genes, and overcoming this challenge is imperative. Isatis indigotica has been used for the treatment of wounds, viral infections, and inflammation for centuries. Antimicrobial peptides (AMPs) are found in all classes of life ranging from prokaryotes to eukaryotes. To identify AMPs, I. indigotica was explored using a novel, sensitive, and high-throughput Bacillus subtilis screening system. We found that IiR515 and IiR915 exhibited significant antimicrobial activities against a variety of bacterial (Xanthomonas oryzae, Ralstonia solanacearum, Clavibacter michiganensis, and C. fangii) and fungal (Phytophthora capsici and Botrytis cinerea) pathogens. Scanning electron microscope and cytometric analysis revealed the possible mechanism of these peptides, which was to target and disrupt the bacterial cell membrane. This model was also supported by membrane fluidity and electrical potential analyses. Hemolytic activity assays revealed that these peptides may act as a potential source for clinical medicine development. In conclusion, the plant-derived novel AMPs IiR515 and IiR915 are effective biocontrol agents and can be used as raw materials in the drug discovery field.
Collapse
Affiliation(s)
- Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| | - Hafiz Muhammad Khalid Abbas
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiale Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing 100081, China; (Y.L.); (G.W.)
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing 100081, China; (Y.L.); (G.W.)
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| |
Collapse
|
27
|
Rajendiran K, Zhao Z, Pei DS, Fu A. Antimicrobial Activity and Mechanism of Functionalized Quantum Dots. Polymers (Basel) 2019; 11:E1670. [PMID: 31614993 PMCID: PMC6835343 DOI: 10.3390/polym11101670] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
An essential characteristic of quantum dots (QDs) is their antimicrobial activity. Compared with conventional antibiotics, QDs not only possess photoluminescence properties for imaging and photodynamic therapy but also have high structural stability. To enhance their antimicrobial efficiency, QDs usually are functionalized by polymers, including poly(ethylene glycol), polyethyleneimine, and poly-l-lysine. Also, QDs conjugated with polymers, such as poly(vinylpyrrolidone) and polyvinylidene fluoride, are prepared as antimicrobial membranes. The main antimicrobial mechanisms of QDs are associated with inducing free radicals, disrupting cell walls/membranes, and arresting gene expression. The different mechanisms from traditional antibiotics allow QDs to play antimicrobial roles in multi-drug-resistant bacteria and fungi. Since the toxicity of the QDs on animal cells is relatively low, they have broad application in antimicrobial research as an effective alternative of traditional antibiotics.
Collapse
Affiliation(s)
- Keerthiga Rajendiran
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
28
|
Tenea GN, Lara MI. Antimicrobial compounds produced by Weissella confusa Cys2-2 strain inhibit Gram-negative bacteria growth. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1561520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gabriela N. Tenea
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Ecuador
| | - Mauricio Israel Lara
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
29
|
Chen A, Yang B, Zhou Y, Sun Y, Ding C. Effects of azo dye on simultaneous biological removal of azo dye and nutrients in wastewater. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180795. [PMID: 30225070 PMCID: PMC6124032 DOI: 10.1098/rsos.180795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/11/2018] [Indexed: 05/21/2023]
Abstract
The potential disrupting effects of Azo dye on wastewater nutrients removal deserved more analysis. In this study, 15 days exposure experiments were conducted with alizarin yellow R (AYR) as a model dye to determine whether the dye caused adverse effects on biological removal of both the dye and nutrients in acclimated anaerobic-aerobic-anoxic sequencing batch reactors. The results showed that the AYR removal efficiency was, respectively, 85.7% and 66.8% at AYR concentrations of 50 and 200 mg l-1, while higher AYR inlet (400 mg l-1) might inactivate sludge. Lower removal of AYR at 200 mg l-1 of AYR was due to the insufficient support of electron donors in the anaerobic process. However, the decolorized by-products p-phenylenediamine and 5-aminosalicylic were completely decomposed in the following aerobic stage at both 50 and 200 mg l-1 of AYR concentrations. Compared with the absence of AYR, the presence of 200 mg l-1 of AYR decreased the total nitrogen removal efficiency from 82.4 to 41.1%, and chemical oxygen demand (COD) removal efficiency initially decreased to 68.1% and then returned to around 83.4% in the long-term exposure time. It was also found that the inhibition of AYR, nitrogen and COD removal induced by a higher concentration of AYR was due to the increased intracellular reactive oxygen species production, which caused the rise of oxidation-reduction potential value and decreased ammonia monooxygenase and nitrite oxidoreductase activities.
Collapse
Affiliation(s)
- Aihui Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, People's Republic of China
- Key Laboratory of Tideland Ecology and Pollution Control about Environmental Protection, Yancheng, Jiangsu 224051, People's Republic of China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, People's Republic of China
| | - Yuanqiang Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, People's Republic of China
| | - Yuze Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, People's Republic of China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, People's Republic of China
- Author for correspondence: Cheng Ding e-mail:
| |
Collapse
|
30
|
Liu S, Shen Z, Wu B, Yu Y, Hou H, Zhang XX, Ren HQ. Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10834-10842. [PMID: 28841301 DOI: 10.1021/acs.est.7b02463] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sheetlike molybdenum disulfide (MoS2) and boron nitride (BN) nanomaterials have attracted attention in the past few years due to their unique material properties. However, information on adverse effects and their underlying mechanisms for sheetlike MoS2 and BN nanomaterials is rare. In this study, cytotoxicities of sheetlike MoS2 and BN nanomaterials on human hepatoma HepG2 cells were systematically investigated at different toxic end points. Results showed that MoS2 and BN nanomaterials decreased cell viability at 30 μg/mL and induced adverse effects on intracellular ROS generation (≥2 μg/mL), mitochondrial depolarization (≥4 μg/mL), and membrane integrity (≥8 μg/mL for MoS2 and ≥2 μg/mL for BN). Furthermore, this study first found that low exposure concentrations (0.2-2 μg/mL) of MoS2 and BN nanomaterials could increase plasma membrane fluidity and inhibit transmembrane ATP binding cassette (ABC) efflux transporter activity, which make both nanomaterials act as a chemosensitizer (increasing arsenic toxicity). Damage to plasma membrane and release of soluble Mo or B species might be two reasons that both nanomaterials inhibit efflux pump activities. This study provides a systematic understanding of the cytotoxicity of sheetlike MoS2 and BN nanomaterials at different exposure levels, which is important for their safe use.
Collapse
Affiliation(s)
- Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Zhuoyan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Yue Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Hui Hou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P. R. China
| |
Collapse
|
31
|
Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 2017; 174:2225-2236. [PMID: 27925153 PMCID: PMC5481648 DOI: 10.1111/bph.13664] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to threaten human and animal health and welfare globally, impacting millions of lives and causing substantial economic loss. The use of antibacterials has been only partially successful in reducing disease impact. Bacterial cells are inherently resilient, and the therapy challenge is increased by the development of antibacterial resistance, the formation of biofilms and the ability of certain clinically important pathogens to invade and localize within host cells. Invasion into host cells provides protection from both antibacterials and the host immune system. Poor delivery of antibacterials into host cells causes inadequate bacterial clearance, resulting in chronic and unresolved infections. In this review, we discuss the challenges associated with existing antibacterial therapies with a focus on intracellular pathogens. We consider the requirements for successful treatment of intracellular infections and novel platforms currently under development. Finally, we discuss novel strategies to improve drug penetration into host cells. As an example, we discuss our recent demonstration that the cell penetrating cationic polymer polyhexamethylene biguanide has antibacterial activity against intracellular Staphylococcus aureus. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
- Faculty of Veterinary MedicineUniversiti Malaysia KelantanLocked Bag 36, Pengkalan Chepa16100Kota BharuKelantanMalaysia
| | - Sharon Kendall
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| | - Liam Good
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| |
Collapse
|