1
|
Osooli P, Yamini Y, Tabibpour M, Moosavi NS. Functionalized carbon nanotube-polyaniline composite coating for on-line microextraction on a screw coupled with high performance liquid chromatography to determine opium alkaloids. Mikrochim Acta 2023; 190:464. [PMID: 37947885 DOI: 10.1007/s00604-023-06045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A novel and efficient on-line microextraction on a screw coupled with high-performance liquid chromatography with an ultraviolet-visible detector was developed to extract and determine trace quantities of five opium alkaloids. All detections of the analytes were achieved at 210 nm. The surface of the screw grooves was electrochemically coated with the carbon nanotubes-COOH/polyaniline composite. The surface characterization was assessed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The prepared screw was inserted into a cartridge of a guard column, and then the constructed microextraction on a screw device was placed in the loop of a six-port HPLC injection valve. The parameters affecting the extraction efficiency of the analytes were optimized using the one variable-at-a-time method. The effective parameters for the extraction efficiency of the analytes, including sample volume, extraction time, sampling flow rate, desorption solvent type, ionic strength, and pH were investigated and optimized. Under optimal conditions, the detection limits were 3-10 μg L-1, and the linear dynamic ranges were 10-2000 μg L-1 with a coefficient of determination greater than 0.9940. The inter-day and intra-day (n = 3) relative standard deviations were less than 7% and 5%, respectively. The proposed method was simple and reproducible, with an acceptable relative recovery (90-108%) for determining opium alkaloids in water and urine samples.
Collapse
Affiliation(s)
- Payam Osooli
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Mahmoud Tabibpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
2
|
Prajapati D, Bhandari P, Hickey N, Mukherjee PS. Water-Soluble Pd 6L 3 Molecular Bowl for Separation of Phenanthrene from a Mixture of Isomeric Aromatic Hydrocarbons. Inorg Chem 2023. [PMID: 37263966 DOI: 10.1021/acs.inorgchem.3c01156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phenanthrene is a high-value raw material in chemical industries. Separation of phenanthrene from isomeric anthracene continues to be a big challenge in the industry due to their very similar physical properties. Herein, we report the self-assembly of a water-soluble molecular bowl (TB) from a phenothiazine-based unsymmetrical terapyridyl ligand (L) and a cis-blocked 90° Pd(II) acceptor. TB featured an unusual bowl-like topology, with a wide rim diameter and a hydrophobic inner cavity fenced by the aromatic rings of the ligand. The above-mentioned features of TB allow it to bind polyaromatic hydrocarbons in its confined cavity. TB shows a higher affinity for phenanthrene over its isomer anthracene in water, which enables it to separate phenanthrene with ∼93% purity from an equimolar mixture of phenanthrene and anthracene. TB is also able to extract pyrene with around ∼90% purity from an equimolar mixture of coronene, perylene, and pyrene. Moreover, TB can be reused for several cycles without significant degradation in its performance as an extracting agent. This clean strategy of separation of phenanthrene and pyrene from a mixture of hydrophobic hydrocarbons by aqueous extraction is noteworthy.
Collapse
Affiliation(s)
- Dharmraj Prajapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neal Hickey
- Center of Excellence in Biocrystallography, Department of Chemical and Pharmaceuticals Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Yang M, Xin J, Fu H, Yang L, Zheng S. Amino-Functionalized Hierarchical Porous Carbon Derived from Zeolitic Imidazolate Frameworks for Ultrasensitive Electrochemical Sensing of Heavy Metals in Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18907-18917. [PMID: 37018015 DOI: 10.1021/acsami.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrochemical sensing provides a feasible avenue to monitor heavy metal ions (HMIs) in water, whereas the construction of highly sensitive and selective sensors remains challenging. Herein, we fabricated a novel amino-functionalized hierarchical porous carbon by the template-engaged method using ZIF-8 as the precursor and polystyrene sphere as the template, followed by carbonization and controllable chemical grafting of amino groups for efficient electrochemical detection of HMIs in water. The amino-functionalized hierarchical porous carbon features an ultrathin carbon framework with a high graphitization degree, excellent conductivity, unique macro-, meso-, and microporous architecture, and rich amino groups. As a result, the sensor exhibits prominent electrochemical performance with significantly low limits of detection for individual HMIs (i.e., 0.93 nM for Pb2+, 2.9 nM for Cu2+, and 1.2 nM for Hg2+) and simultaneous detection of HMIs (i.e., 0.62 nM for Pb2+, 1.8 nM for Cu2+, and 0.85 nM for Hg2+), which are superior to most reported sensors in the literature. Moreover, the sensor displays excellent anti-interference ability, repeatability, and stability for HMI detection in actual water samples.
Collapse
Affiliation(s)
- Mingyue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Jinkai Xin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
4
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Preparation of porous carbon nanomaterials and their application in sample preparation: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Ghorani-Azam A, Balali-Mood M, Khatami SM, Asoodeh A, Es'haghi Z, Riahi-Zanjani B. Plant Extract and Herbal Products as Potential Source of Sorbent for Analytical Purpose: An Experimental Study of Morphine and Codeine Determination Using HPLC and LC-MSMS. J Chromatogr Sci 2021; 59:482-489. [PMID: 33388745 DOI: 10.1093/chromsci/bmaa108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/08/2020] [Indexed: 01/01/2023]
Abstract
Solid-phase microextraction (SPME) is an analytical method for microextraction of analytes, in which the analytes bind to the sorbent on the surface of the SPME fiber. Many types of chemical agents are used as sorbent; however, many of these sorbents cause secondary contamination or are not cost-effective. Here, aqueous extract of Ferula gummosa was evaluated as potential source of sorbent for simultaneous microextraction of morphine and codeine. For this purpose, multiwalled carbon nanotubes were carboxylated with H2SO4/HNO3 (3:1) and then functionalized with aqueous extract of F. gummosa. Functionalization was confirmed by Fourier transform infrared and Raman spectroscopy measurements as well as scanning electron microscopy analysis. Porous polypropylene hollow fibers were filled with the functionalized carbon nanotubes (CNTs) and used for analyte extraction in urine sample at 40°C and pH 6 for 2 min. Reversed-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the fiber could preconcentrate 1 ng/mL of morphine and 0.75 ng/mL codeine in urine sample and was successfully used for 30 times with no significant loss in the extraction efficiency. Limit of detection (LOD) and limit of quantification (LOQ) for morphine were 1 and 3.3 ng/mL, respectively. LOD and LOQ for codeine were determined 0.75 and 2.47 ng/mL, respectively. Recovery of the fiber was 80% and 93% for morphine and codeine, respectively. SPME fiber using extract of F. gummosa plant was used for the detection of a small amount of morphine in urine sample. Therefore, plants can be considered as abundant and cheap sources of sorbent for various analytical purposes.
Collapse
Affiliation(s)
- Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Seyed-Mola Khatami
- Department of Chemistry, Faculty of Samen Hojaj, Mashhad Branch, Technical and Vocational University (TVU), Tehran 9186459433, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University, Mashhad 9189896311, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
7
|
Ahmad SM, Gonçalves OC, Oliveira MN, Neng NR, Nogueira JMF. Application of Microextraction-Based Techniques for Screening-Controlled Drugs in Forensic Context-A Review. Molecules 2021; 26:2168. [PMID: 33918766 PMCID: PMC8070059 DOI: 10.3390/molecules26082168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
The analysis of controlled drugs in forensic matrices, i.e., urine, blood, plasma, saliva, and hair, is one of the current hot topics in the clinical and toxicological context. The use of microextraction-based approaches has gained considerable notoriety, mainly due to the great simplicity, cost-benefit, and environmental sustainability. For this reason, the application of these innovative techniques has become more relevant than ever in programs for monitoring priority substances such as the main illicit drugs, e.g., opioids, stimulants, cannabinoids, hallucinogens, dissociative drugs, and related compounds. The present contribution aims to make a comprehensive review on the state-of-the art advantages and future trends on the application of microextraction-based techniques for screening-controlled drugs in the forensic context.
Collapse
Affiliation(s)
- Samir M. Ahmad
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
- Molecular Pathology and Forensic Biochemistry Laboratory, CiiEM, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Forensic and Psychological Sciences Laboratory Egas Moniz, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Oriana C. Gonçalves
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
| | - Mariana N. Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - José M. F. Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (O.C.G.); (M.N.O.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Goh SXL, Goh EXY, Lee HK. Sodium dodecyl sulfate-multi-walled carbon nanotubes-coated-membrane solid phase extraction of glucocorticoids in aqueous matrices. Talanta 2021; 221:121624. [PMID: 33076152 DOI: 10.1016/j.talanta.2020.121624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
A membrane-based solid phase extraction (SPE)-ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the determination of nine glucocorticoids in water. This new hybrid SPE approach involved the deposition of sodium dodecyl sulfate (SDS)-multi-walled carbon nanotubes (MWCNTs) on a piece of polypropylene membrane that served as the extraction device. Hitherto, such a sample preparation procedure has not been applied to the analysis of water contaminants before. The use of the surfactant helped to disperse the MWCNTs effectively so that they were coated uniformly onto the polypropylene membrane. This increased the overall extraction efficiency of the procedure. Characterisation of the SDS-MWCNTs material was performed using transmission electron microscopy and scanning electron microscopy. The membrane device did not require a pre-conditioning step. The most favourable extraction parameters such as type of surfactant, percentage of surfactant, type of desorption solvent, stirring rate, desorption time, extraction time, temperature, salting-out effect, pH and diameter of MWCNTs were obtained. The method showed linearity ranges from 0.2 to 100 ng mL-1 for hydrocortisone, dexamethasone, cortisone acetate and beclomethasone dipropionate, and 0.5-100 ng mL-1 for the rest of the analytes. Limits of detection ranging from 0.019 to 0.098 ng mL-1, and limits of quantification ranging from 0.065 to 0.326 ng mL-1, were obtained for the analytes. The intra-day repeatability was between 1.77 and 3.56% while the inter-day reproducibility was between 2.69 and 9.53%, respectively. The method was used to analyse glucocorticoids as contaminants in the canal water samples.
Collapse
Affiliation(s)
- Shalene Xue Lin Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Esther Xue Yi Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; NUS Environmental Research Institute, National University of Singapore, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
9
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Manousi N, Zachariadis GA. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020; 25:E2182. [PMID: 32392764 PMCID: PMC7249015 DOI: 10.3390/molecules25092182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise a group of chemical compounds consisting of two or more fused benzene rings. PAHs exhibit hydrophobicity and low water solubility, while some of their members are toxic substances resistant to degradation. Due to their low levels in environmental matrices, a preconcentration step is usually required for their determination. Nowadays, there is a wide variety of sample preparation techniques, including micro-extraction techniques (e.g., solid-phase microextraction and liquid phase microextraction) and miniaturized extraction techniques (e.g., dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fabric phase sorptive extraction etc.). Compared to the conventional sample preparation techniques, these novel techniques show some benefits, including reduced organic solvent consumption, while they are time and cost efficient. A plethora of adsorbents, such as metal-organic frameworks, carbon-based materials and molecularly imprinted polymers, have been successfully coupled with a wide variety of extraction techniques. This review focuses on the recent advances in the extraction techniques of PAHs from environmental matrices, utilizing novel sample preparation approaches and adsorbents.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Nakagami K, Monobe T, Sumiya O, Takashima K, Ueta I, Saito Y. Braid configuration designed for fiber-packed capillary in microscale sample preparation. J Chromatogr A 2020; 1613:460694. [DOI: 10.1016/j.chroma.2019.460694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
|
13
|
Tian Y, Hou Y, Yu Q, Wang X, Tian M. Layer‐by‐layer self‐assembly of a novel covalent organic frameworks microextraction coating for analyzing polycyclic aromatic hydrocarbons from aqueous solutions via gas chromatography. J Sep Sci 2020; 43:896-904. [DOI: 10.1002/jssc.201900870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Yuan Tian
- Tsinghua UniversityGraduate School at Shenzhen Shenzhen Guangdong P. R. China
| | - Yuxia Hou
- Henan Institute of Science and Technology Xinxiang Henan P. R. China
| | - Quan Yu
- Tsinghua UniversityGraduate School at Shenzhen Shenzhen Guangdong P. R. China
| | - Xiaohao Wang
- Tsinghua UniversityGraduate School at Shenzhen Shenzhen Guangdong P. R. China
| | - Mengkui Tian
- Henan Institute of Science and Technology Xinxiang Henan P. R. China
| |
Collapse
|
14
|
Ji X, Sun M, Li C, Han S, Wang X, Tian Y, Feng J. Bare polyprolylene hollow fiber as extractive phase for in‐tube solid‐phase microextraction to determine estrogens in water samples. J Sep Sci 2019; 42:2398-2406. [DOI: 10.1002/jssc.201900010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
15
|
Riahi-Zanjani B, Balali-Mood M, Es'haghi Z, Asoodeh A, Ghorani-Azam A. Molecular modeling and experimental study of a new peptide-based microextraction fiber for preconcentrating morphine in urine samples. J Mol Model 2019; 25:54. [PMID: 30734871 DOI: 10.1007/s00894-019-3925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) are best known for their bactericidal properties; however, due to their unique and flexible structures, they have also been proposed as potential selective sorbents for specific molecules. In the present study, we aimed to design and produce a new peptide-based microextraction fiber for preconcentrating morphine in urine samples. The binding of morphine to the peptide was first evaluated by computational simulation using the Molecular Operating Environment (MOE) 2015.10 software. A similar study was then performed using DS BIOVIA Materials Studio 2017 v17.1.0.48, which confirmed the results of the simulation carried out with MOE. Afterwards, those results were also confirmed by experimental research. In the experimental evaluation, carbon nanotubes (CNTs) were initially carboxylated with H2SO4/HNO3 (3:1) and then functionalized with the peptide. FTIR analysis, Raman measurements, and SEM imaging were used to confirm that CNT functionalization was successful as well as to check the nanostructure of the fiber. To evaluate the functionality of the fiber, it was inserted into a microtube containing a urine sample that included morphine and then sonicated for 5 min at 40 °C. Afterwards, the fiber was washed with methanol 20% (H2O/methanol) and the resulting sample was analyzed by HPLC. This procedure was repeated for different concentrations of morphine in the urine sample. The computational and experimental results showed that a morphine concentration as low as 0.25 ppb in urine could be adsorbed and detected using the peptide fiber. Therefore, given its semi-selective binding affinity for morphine, this peptide-based fiber can be considered a new approach to the detection of small amounts of morphine in biological samples.
Collapse
Affiliation(s)
- Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University, Mashhad, 19395-4697, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Adel Ghorani-Azam
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Riahi-Zanjani B, Balali-Mood M, Asoodeh A, Es'haghi Z, Ghorani-Azam A. Potential application of amino acids in analytical toxicology. Talanta 2019; 197:168-174. [PMID: 30771919 DOI: 10.1016/j.talanta.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
The ability of extraction and preconcentration of small quantities of substances from biological samples is important in analytical sciences, particularly forensic medicine. In the present study, we evaluated the binding potential of amino acids to produce a new solid phase microextraction fiber based on carbon nanotube (CNTs) for extraction and preconcentration of small amount of morphine in urine sample. Raw CNTs were first carboxylated and then functionalized with 3 amino acids including glutamate, arginine, and cysteine. Functionalization was confirmed by FTIR analysis, Raman spectroscopy and SEM imaging. The functionalized CNTs were coated on polypropylene hollow fiber and used for preconcentration. The results of HPLC analysis in isocratic elution mode using acetonitrile-sodium acetate (10:90, v/v; pH 4; 0.01 M) as the mobile phase showed that amino acids are able to adsorb morphine and the prepared fiber could preconcentrate a very low concentration of morphine (0.25 ppb) in urine matrix. In addition, the fiber was successfully used for up to 30 times with no significant loss in the extraction efficiency. Lowest limit of detection (LOD) and limit of quantitation (LOQ) was 0.07 and 0.25, respectively. Also, the lowest and best recovery of the fiber was 87.8% and 139% at LOQ, which belonged to glutamate and arginine, respectively. The fibers based on amino acids can be used for the detection of a small amount of morphine in biological samples, which are not detectable by conventional methods. Simple mechanism of these fibers in preconcentrating morphine makes them a novel candidate for detection of other opiates and drugs of abuses in crime scene investigations and postmortem examinations several days after exposure.
Collapse
Affiliation(s)
- Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University, 19395-4697, Iran
| | - Adel Ghorani-Azam
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|