1
|
Self-assembly of DNA nanospheres with controllable size and self-degradable property for enhanced antitumor chemotherapy. Colloids Surf B Biointerfaces 2023; 222:113122. [PMID: 36587435 DOI: 10.1016/j.colsurfb.2022.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Controllable size, self-degradability and targeting property are important for a precise improvement of anticancer effects and reduction of side effects of drug vehicles. Here, a series of DNA nanospheres with controllable size and self-degradation ability were constructed through the hybridization of two i-motif strands and two linker strands for targeted cancer therapy. DNA nanospheres with different sizes were fabricated by regulating the linker sequence, and their pH-responsive self-degradation property was realized by the introduction of the i-motif strand. Moreover, the ZY11 aptamer was introduced to endow the DNA nanospheres with targeting property toward SMMC-7721 cancer cells. The results revealed that the appropriate size of DNA nanospheres (80 nm) highly promoted the internalization by mammalian cells. The results of DLS, AFM and CD spectra showed that the DNA nanospheres were stable in a physiological environment but they self-degraded in a slightly acidic environment due to the existence of the i-motif strand. Moreover, the fluorescence of DOX@AP-NSs2 was triple at pH = 5.0 than at pH = 7.4, which further confirmed the pH-responsive drug release performance. The above results proved that the use of DOX@AP-NSs2 is a promising approach to accelerate the rapid release of drugs into the tumors and avoid drug leakage into the normal tissue. The results at a cellular level and in vivo confirmed the pH-responsive targeted antitumor effect. Hence, the novel DNA nanospheres with controllable size and self-degradable property represent a potential tool for targeted drug delivery and cancer therapy.
Collapse
|
2
|
Recent Advances of Magnetic Gold Hybrids and Nanocomposites, and Their Potential Biological Applications. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetic gold nanoparticles (mGNP) have become a great interest of research for nanomaterial scientists because of their significant magnetic and plasmonic properties applicable in biomedical applications. Various synthetic approaches and surface modification techniques have been used for mGNP including the most common being the coprecipitation, thermal decomposition, and microemulsion methods in addition to the Brust Schiffrin technique, which involves the reduction of metal precursors in a two-phase system (water and toluene) in the presence of alkanethiol. The hybrid magnetic–plasmonic nanoparticles based on iron core and gold shell are being considered as potential theranostic agents. In this critical review, in addition to future works, we have summarized recent developments for synthesis and surface modification of mGNP with their applications in modern biomedical science such as drug and gene delivery, bioimaging, biosensing, and neuro-regeneration, neuro-degenerative and arthritic disorders. This review includes techniques and biological applications of mGNP majorly based on research from the previous six years.
Collapse
|
3
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
4
|
Bellotti E, Cascone MG, Barbani N, Rossin D, Rastaldo R, Giachino C, Cristallini C. Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy. Biomedicines 2021; 9:biomedicines9091275. [PMID: 34572461 PMCID: PMC8471118 DOI: 10.3390/biomedicines9091275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemotherapeutics represent the standard treatment for a wide range of cancers. However, these agents also affect healthy cells, thus leading to severe off-target effects. Given the non-selectivity of the commonly used drugs, any increase in the selective tumor tissue uptake would represent a significant improvement in cancer therapy. Recently, the use of gene therapy to completely remove the lesion and avoid the toxicity of chemotherapeutics has become a tendency in oncotherapy. Ideally, the genetic material must be safely transferred from the site of administration to the target cells, without involving healthy tissues. This can be achieved by encapsulating genes into non-viral carriers and modifying their surface with ligands with high selectivity and affinity for a relevant receptor on the target cells. Hence, in this work we evaluate the use of terpolymer-based nanocapsules for the targeted delivery of DNA toward cancer cells. The surface of the nanocapsules is decorated with folic acid to actively target the folate receptors overexpressed on a variety of cancer cells. The nanocapsules demonstrate a good ability of encapsulating and releasing DNA. Moreover, the presence of the targeting moieties on the surface of the nanocapsules favors cell uptake, opening up the possibility of more effective therapies.
Collapse
Affiliation(s)
- Elena Bellotti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
- Correspondence: (E.B.); (C.C.); Tel.: +39-(010)-28961 (E.B.); +39-(050)-2217802 (C.C.)
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10143 Turin, Italy; (D.R.); (R.R.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10143 Turin, Italy; (D.R.); (R.R.); (C.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10143 Turin, Italy; (D.R.); (R.R.); (C.G.)
| | - Caterina Cristallini
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
- Institute for Chemical and Physical Processes, IPCF ss Pisa, 56122 Pisa, Italy
- Correspondence: (E.B.); (C.C.); Tel.: +39-(010)-28961 (E.B.); +39-(050)-2217802 (C.C.)
| |
Collapse
|
5
|
Baig MMFA, Dissanayaka WL, Zhang C. 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts. Int J Biol Macromol 2021; 188:657-669. [PMID: 34371047 DOI: 10.1016/j.ijbiomac.2021.07.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/06/2023]
Abstract
Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.
Collapse
Affiliation(s)
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
6
|
Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021; 9:5092-5115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current treatment strategies for cancer therapy have posed many problems in achieving high efficacy. Therefore, an urgent step is needed to develop innovative therapies that can win beyond satisfactory results against tumor. Ferroptosis that is a kind of non-apoptotic based programmed cell death has played a crucial role in eradicating tumors by reactive oxygen species and iron-dependent pathways. Research shows a remarkable potential of ferroptosis in eliminating aggressive malignancies resistant to traditional therapies. The combination of nanomedicine and ferroptosis has revealed a close relationship for the treatment of various cancer types with high efficacy. This review introduces the basics of nanomedicine-based ferroptosis first to emphasize the feasibility and properties of ferroptosis in cancer therapy. Then, the current research on the applications of nanomedicine for the ferroptosis-based anticancer therapy is highlighted. Finally, conclusions and future research directions in perspective of various challenges in developing nanomedicine-based ferroptosis into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China.
| | | | | | | | | | | |
Collapse
|
7
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Mudassir J. The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors. J Pharm Anal 2021; 11:174-182. [PMID: 34012693 PMCID: PMC8116213 DOI: 10.1016/j.jpha.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
DNA-nanotechnology-based nano-architecture scaffolds based on circular strands were designed in the form of DNA-nanowires (DNA-NWs) as a polymer of DNA-triangles. Circularizing a scaffold strand (84-NT) was the critical step followed by annealing with various staple strands to make stiff DNA-triangles. Atomic force microcopy (AFM), native polyacrylamide gel electrophoresis (PAGE), UV-analysis, MTT-assay, flow cytometry, and confocal imaging were performed to assess the formulated DNA-NWs and cisplatin (CPT) loading. The AFM and confocal microscopy images revealed a uniform shape and size distribution of the DNA-NWs, with lengths ranging from 2 to 4 μm and diameters ranging from 150 to 300 nm. One sharp band at the top of the lane (500 bp level) with the loss of electrophoretic mobility during the PAGE (native) gel analysis revealed the successful fabrication of DNA-NWs. The loading efficiency of CPT ranged from 66.85% to 97.35%. MTT and flow cytometry results showed biocompatibility of the blank DNA-NWs even at 95% concentration compared with the CPT-loaded DNA-NWs. The CPT-loaded DNA-NWs exhibited enhanced apoptosis (22%) compared to the apoptosis (7%) induced by the blank DNA-NWs. The release of CPT from the DNA-NWs was sustained at < 75% for 6 h in the presence of serum, demonstrating suitability for systemic applications. The IC50 of CPT@DNA-NWs was reduced to 12.8 nM CPT, as compared with the free CPT solution exhibiting an IC50 of 51.2 nM. Confocal imaging revealed the targetability, surface binding, and slow internalization of the DNA-NWs in the scavenger-receptor-rich cancer cell line (HepG2) compared with the control cell line.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Chengfei Zhang
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
8
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Nisar N. Treatment of Wilms’ nephroblastoma cancer cells via EGFR targeting of dactinomycin loaded DNA-nanowires. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:233-242. [DOI: 10.1007/s40005-020-00509-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
|
9
|
Baig MMFA, Zou T, Neelakantan P, Zhang C. Development and functionalization of
DNA
nanostructures for biomedical applications. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | - Ting Zou
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | - Prasanna Neelakantan
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | - Chengfei Zhang
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
10
|
Baig MMFA, Lai WF, Akhtar MF, Saleem A, Mikrani R, Farooq MA, Ahmed SA, Tahir A, Naveed M, Abbas M, Ansari MT. Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells. J Mol Liq 2020; 316:113785. [DOI: 10.1016/j.molliq.2020.113785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Baig MMFA, Lai WF, Ashraf S, Saleem A, Akhtar MF, Mikrani R, Naveed M, Siddique F, Taleb A, Mudassir J, Khan GJ, Ansari MT. The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high-efficiency anticancer effects. Drug Deliv Transl Res 2020; 10:1381-1392. [PMID: 32661832 DOI: 10.1007/s13346-020-00820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Camptothecin (CMPT) in a free form is extremely cytotoxic as well as hydrophobic drug, and is considered to be highly contagious for systemic administration. The fibronectin (FN)-functionalized DNA-based nanocarrier has been designed to load CMPT and target integrin (αvβ3) receptors which are highly expressed on the A549 cancer cells. Here, we report DNA nanocarrier in the form of DNA-nanofibers (DNA-NFs) capable of loading CMPT via strand intercalation in the GC (base pairs)-rich regions of the DNA duplex. Hence, our keen purpose was to explore the potential of DNA-NFs to load CMPT and assess the improvements of the outcomes in terms of enhanced therapeutic effects to integrin-rich A549 cancer cells with reduced cytotoxic effects to integrin-lacking HEK293 cells. DNA-NFs were formulated as a polymer of DNA triangles. DNA triangles arranged in a programmed way through the complementary overhangs present at the vertices. DNA triangles were primarily obtained through the annealing of the freshly circularized scaffold strands with the three distinct staple strands of specific sequences. The polymerized triangular tiles instead of forming two-dimensional nanosheets underwent self-coiling to give rise to DNA-NF-shaped structures. Flow cytometry and MTT assays were performed to observe cytotoxic and apoptotic effects on integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. AFM, native-page, and confocal experiments confirmed the polymerization of DNA triangles and the morphology of the resulting nanostructures. AFM and confocal images revealed the length of DNA-NFs to be 3-6 μm and the width from 70 to 110 nm. CMPT loading (via strands intercalation) in GC-rich regions of DNA-NFs and the FN functionalization (TAMRA tagged; red fluorescence) via amide chemistry using amino-modified strands of DNA-NFs were confirmed through the UV-shift analysis (> 10 nm shift) and confocal imaging. Blank DNA-NFs were found to be highly biocompatible in 2-640 μM concentrations. MTT assay and flow cytometry experiments revealed that CMPT-loaded DNA-NFs showed a dose-dependent decrease in the cell viability to integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. Conclusively, FN-functionalized, CMPT-loaded DNA-NFs effectively destroyed integrin-rich A549 cancer cells in a targeted manner compared with integrin-deficient HEK293 cells. Grapical abstract.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Saba Ashraf
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Reyaj Mikrani
- School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
12
|
Baig MMFA, Lai WF, Akhtar MF, Saleem A, Ahmed SA, Xia XH. DNA nanotechnology as a tool to develop molecular tension probes for bio-sensing and bio-imaging applications: An up-to-date review. NANO-STRUCTURES & NANO-OBJECTS 2020; 23:100523. [DOI: 10.1016/j.nanoso.2020.100523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Synthesis of Ligand Functionalized ErbB-3 Targeted Novel DNA Nano-Threads Loaded with the Low Dose of Doxorubicin for Efficient In Vitro Evaluation of the Resistant Anti-Cancer Activity. Pharm Res 2020; 37:75. [PMID: 32232574 DOI: 10.1007/s11095-020-02803-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Doxorubicin (Dox) being a hydrophobic drug needs a unique carrier for the effective encapsulation with uniformity in the aqueous dispersion, cell culture media and the biological-fluids that may efficiently target its release at the tumor site. METHODS Circular DNA-nanotechnology was employed to synthesize DNA Nano-threads (DNA-NTs) by polymerization of triangular DNA-tiles. It involved circularizing a linear single-stranded scaffold strand to make sturdier and rigid triangles. DNA-NTs were characterized by the AFM and Native-PAGE tests. Dox binding and loading to the Neuregulin1 (NRG1) functionalized DNA based nano-threads (NF-DBNs) was estimated by the UV-shift analysis. The biocompatibility of the blank NRG-1/DNA-NTs and enhanced cytotoxicity of the NF-DBNs was assessed by the MTT assay. Cell proliferation/apoptosis was analyzed through the Flow-cytometry experiment. Cell-surface binding and the cell-internalization of the NF-DBNs was captured by the double-photon confocal microscopy (DPCM). RESULTS The AFM images revealed uniform DNA-NTs with the diameter 30 to 80 nm and length 400 to 800 nm. PAGE native gel was used for the further confirmation of the successful assembly of the strands to synthesize DNA-NTs that gave one sharp band with the decreased electrophoretic mobility down the gel. MTT assay showed that blank DNA-NTs were biocompatible to the cells with less cytotoxicity even at elevated concentrations with most of the cells (94%) remaining alive compared to the dose-dependent enhanced cytotoxicity of NF-DBNs further evidenced by the Flow-cytometry analysis. CONCLUSION Uniform and stiffer DNA-NTs for the potential applications in targeted drug delivery was achieved through circular DNA scaffolding.
Collapse
|
14
|
The PA-receptor mediated internalization of carboplatin loaded poly-anionic DNA-nanowires for effective treatment of resistant hepatic-cancer HepG-2 cells. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01293-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Baig MMFA, Lai WF, Mikrani R, Jabeen M, Naveed M, Abbas M, Farooq MA, Ahsan A, Kassim SA, Khan GJ, Ansari MT. Synthetic NRG-1 functionalized DNA nanospindels towards HER2/neu targets for in vitro anti-cancer activity assessment against breast cancer MCF-7 cells. J Pharm Biomed Anal 2020; 182:113133. [PMID: 32004770 DOI: 10.1016/j.jpba.2020.113133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
DNA based nano-carriers synthesized from short circular scaffolds (circular DNA nanotechnology) attains stiffer topology for ligand functionalization (neuregulin-1/NRG-1 ligand) and biological applications (targeted drug delivery). Daunorubicin (DR) is a hydrophobic chemical that requires robust vectors to efficiently encapsulate and avoid its free dispersion in water, biological media and cell culture. Here we design DNA nanospindels (DNA-NS) to efficiently load DR and target the (highly expressed) HER2/neu receptors on the plasma membrane of drug-resistant MCF-7 (breast cancer) cells. DNA-NS were synthesized by polymerizing the DNA-triangles (utilizing 84-nt short circular scaffold strand) into larger DNA nano-ribbons characterized by the native-PAGE testing. AFM results revealed the spinning of DNA nanoribbons on its (own) axis because of the intrinsic curvature of the DNA double helix resulting in the formation of the firm and twisted DNA-NS with the diameter (50-70 nm) and length (0.5-4 μm). DA loading onto DNA-NS was confirmed by the UV shift analysis. The MTT results with the blank DNA-NS evidenced its biocompatibility (remained value of 93%) compared to the decreased viability of the MCF-7 cells after treatment with DNA-NS (DR loaded). These findings were further supported by the analysis of cell proliferation/apoptosis through flow cytometry showing 64% apoptosis after treating with the DR loaded DNA-NS. Hence, through the short circular DNA nanotechnology, we have achieved a stiffer, uniform, and biocompatible DNA-NS for applications in the targeted therapy.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Reyaj Mikrani
- Department of Pharmaceutics, Basic medicine, and Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, Basic medicine, and Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Said Abasse Kassim
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|
16
|
Baig MMFA, Zhang QW, Younis MR, Xia XH. A DNA Nanodevice Simultaneously Activating the EGFR and Integrin for Enhancing Cytoskeletal Activity and Cancer Cell Treatment. NANO LETTERS 2019; 19:7503-7513. [PMID: 31515999 DOI: 10.1021/acs.nanolett.9b03325] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-surface receptors (e.g., EGFR and integrin) and their interactions play determining roles in signal transduction and cytoskeletal activation, which affect cell attachment/detachment, invasion, motility, metastasis (intracellular), and cell-cell signaling. For instance, the interactions between the EGFR and integrin (α6β4) may cause increased mechanical force and shear stress via enhanced cytoskeleton activation. Here, we design a DNA nanodevice (DNA-ND) that can simultaneously target the EGFR and integrin receptors on the caveolae. The piconewton (pN) forces in response to the EGFR-integrin coactivation can be sensed upon the unfolding of the DNA hairpin structure on the side arm of the device via changes of the fluorescence and plasmonic signals. We find that simultaneous activation of EGFR-integrin receptors causes enhanced signal transduction, contractions of the cells, and initiation of the biochemical pathways, thus resulting in a change of the cell division and endocytosis/exocytosis processes that affect the cell proliferation/apoptosis. The DNA-ND further enables us to visualize the cointernalization and degradation of the receptors by lysosomes, providing a novel approach toward bioimaging and mechano-pharmacology.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qian-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|