1
|
Rasheed H, Ijaz M, Ahmed A, Ali MM. Antimicrobial resistance, virulence profiling, and drug repurposing analysis of Staphylococcus aureus from camel mastitis. Vet Res Commun 2024; 49:59. [PMID: 39731665 DOI: 10.1007/s11259-024-10628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S. aureus isolates from subclinical mastitis in camels. A total of 384 milk samples were collected and submitted to isolate S. aureus. The S. aureus isolates exhibiting resistance to Penicillin and Cefoxitin disc on Kirby-Bauer disc diffusion method were considered as β-lactam resistant S. aureus (BRSA) and methicillin-resistant S. aureus (MRSA) which were further confirmed by PCR targeting blaZ and mecA genes, respectively. The results showed that S. aureus was found in 57.06% of subclinical (SCM) positive camel milk samples. A high molecular prevalence of BRSA and MRSA were found to be 48.51% and 46.53% respectively depicting that treating these infections is challenging due to their high resistance levels. The phylogenetic analysis revealed a significant resemblance of the study isolates with each other and with already reported sequences from different countries which shows the potential for the spread of pathogen. Virulence profiling of antibiotic resistance strains showed the presence of virulence markers (nuc and coag genes), intercellular adhesion genes (icaA, icaD), Panton-Valentine leukocidin (pvl) gene, and enterotoxin-producing genes including sea, seb, sec, and sed. In-vitro antibiotic susceptibility testing revealed that the most resistant antibiotic group was penicillin followed by aminoglycosides and cephalosporins. Drug repurposing analysis of different non-antibiotics for combination therapies with resistant antibiotics was done to combat the S. aureus isolates harboring the mecA and blaZ genes. The results revealed the synergistic effect of amoxicillin, sulfamethoxazole, gentamicin, and doxycycline with ketoprofen, amikacin with flunixin meglumine, and gentamicin with N-acetylcysteine (NAC) against study isolates. The current investigation provides the status of antibiotic-resistant strains and virulence factors of S. aureus in the udder of dromedary camels. The combinational therapy of resistant antibiotics with non-antibiotics provides a potential therapeutic option for the treatment of resistant strains.
Collapse
Affiliation(s)
- Hamza Rasheed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Arslan Ahmed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Javed MU, Ijaz M, Durrani AZ, Ali MM. Molecular insights into antimicrobial resistant Staphylococcus aureus strains: A potential zoonosis of goat origin. Microb Pathog 2024; 196:106961. [PMID: 39307195 DOI: 10.1016/j.micpath.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Antimicrobial-resistant (AMR) Staphylococcus aureus (S. aureus) strains have attained global attention due to their life-threatening zoonotic nature. Being a member of ESKAPE group, S. aureus has an ability to escape the biocidal action of antimicrobial drugs. The current study investigated the prevalence and molecular characterization of methicillin-resistant S. aureus (MRSA), β-lactam-resistant S. aureus (BRSA), aminoglycoside-resistant S. aureus (ARSA), tetracycline-resistant S. aureus (TRSA), and fluoroquinolones-resistant S. aureus (FRSA) associated with goat subclinical mastitis (SCM). Furthermore, the antimicrobial resistance and susceptibility profile of various antibiotics and non-antibiotics (NSAIDs, nisin, N-acetylcysteine, vitamin-C) along with their possible role in modulating the antibiotic resistance of MDR isolates was also investigated. A total of 768 goat milk samples were subjected to California mastitis test for SCM followed by bacteriological and molecular characterization of S. aureus. Moreover, in-vitro susceptibility of resistant antibiotics, non-antibiotics, and their combination against MDR S. aureus were conducted through well diffusion and broth microdilution assays. The results depicted that 55.47 % and 26.82 % of milk samples were positive for SCM and S. aureus, respectively. The molecular assay confirmed 35.92 % of isolates as MRSA, 45.63 % as BRSA, 50.49 % as ARSA, and 32.52 % but no isolate was confirmed as FRSA on molecular basis. The multidrug resistance was observed in 62.13 % and 47.09 % isolates, respectively. Molecular characterized MDR S. aureus revealed high homology of study isolates with the isolates of neighboring countries like India, Korea, Iran, and China. Antimicrobial susceptibility trials on well diffusion assay showed higher efficacy of different non-antibiotics with resistant antibiotics as penicillin with ketoprofen and gentamicin with flunixin meglumine while oxytetracycline with N-acetylcystiene. The synergy testing by checkerboard assay revealed synergistic activity of penicillin with ketoprofen, gentamicin with flunixin meglumine, and oxytetracycline with N-acetylcysteine. The current study highlighted the emergence and spread of AMR S. aureus strains from goat SCM and provided insights into possible drug repurposing of various non-antibiotics to modulate the multidrug resistance of S. aureus which will be helpful in devising the therapeutic options and control measures for this pathogen.
Collapse
Affiliation(s)
- Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Aneela Zameer Durrani
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Bakht P, Ijaz M, Iqbal MZ, Aslam HB, Rehman A. Repurposing of non-steroidal anti-inflammatory drugs for combination therapies to combat multidrug-resistant S. aureus of bovine reproductive tract origin. Vet Res Commun 2024; 48:1497-1510. [PMID: 38347266 DOI: 10.1007/s11259-024-10322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/31/2024] [Indexed: 06/04/2024]
Abstract
Multidrug-resistant bacteria have become the predominant etiology in bovine female reproductive tract infections and thus require effective treatment approaches. The main goal of this study was the molecular detection of mecA, blaZ, tetK, and aacA-aphD genes in Staphylococcus aureus (S. aureus) responsible for methicillin, beta-lactam, tetracycline, and aminoglycoside resistance respectively. Phylogenetic analysis was conducted to check the homology of staphylococcal genes with NCBI sequences. The in-vitro efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in combination therapies against MDR S. aureus was evaluated using well diffusion assay and checkerboard method. Vaginal swab samples (n = 384) collected from bovines suffering from endometritis, pyometra, and retained placenta were tested for S. aureus. Results showed a 17.96% overall prevalence. Both phenotypic and genotypic resistance was observed among S. aureus isolates with 50.72% and 37.68% isolates being confirmed as methicillin-resistant (MRSA), 36.23% and 18.84% isolates exhibiting beta-lactam, 40.58%, and 27.54% isolates showing tetracycline, and 33.33% and 36.23% isolates showing aminoglycosides resistance based on disc diffusion and gene confirmation, respectively. Phylogenetic analysis indicated homology with previously reported Pakistani isolates suggesting the possibility of MDR S. aureus transmission within and between animals. Synergy testing indicated that combinations of ceftriaxone-ketoprofen (153.77%), ceftriaxone-meloxicam (149.55%), amoxiclav-flunixin meglumine (106.06%), and oxytetracycline-flunixin meglumine (104.47%) showed synergy on well diffusion assay. Based on the fractional inhibitory concentration index by checkerboard method, oxytetracycline-meloxicam and gentamicin-ketoprofen combinations exhibited synergistic interaction. In conclusion, MDR S. aureus resistance was mitigated in-vitro through the combination of antibiotics (oxytetracycline, gentamicin) with NSAIDs (meloxicam, ketoprofen) that could be used to create therapeutic strategies for bovine reproductive issues.
Collapse
Affiliation(s)
- Painda Bakht
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Muhammad Zahid Iqbal
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hassaan Bin Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Rehman
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Zhang D, Lu X, Feng X, Shang X, Liu Q, Zhang N, Yang H. Molecular characteristics of Staphylococcus aureus strains isolated from subclinical mastitis of water buffaloes in Guangdong Province, China. Front Vet Sci 2023; 10:1177302. [PMID: 38026659 PMCID: PMC10663324 DOI: 10.3389/fvets.2023.1177302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Intramammary infections (IMI) in animals reared for milk production can result in large economic losses and distress to the animals. Staphylococcus aureus is an important causative agent of IMI in dairy cows, but its prevalence in water buffaloes has not been determined. Therefore, the current study was conducted to investigate the prevalence of subclinical mastitis in water buffaloes and the antimicrobial susceptibility, virulence genes and biofilm formation abilities of Staphylococcus aureus isolates recovered from water buffaloes in Guangdong, China. Staphylococcus aureus strains were isolated from milk samples of water buffaloes with subclinical mastitis, and twofold microdilution, PCR and crystal violet staining methods were used to determine antimicrobial susceptibility, distributions of virulence and antimicrobial resistance genes and biofilm formation ability, respectively. Our results indicated that 29.44% of water buffaloes were diagnosed with subclinical mastitis, and the most prevalent pathogens were Escherichia coli (96.17%), coagulase-negative staphylococci (CoNS) (67.60%) and S. aureus (28.57%). Most S. aureus isolates showed resistance to bacitracin, doxycycline, penicillin, florfenicol, and tetracycline but were susceptible to ciprofloxacin, ceftizoxime, cefoquinoxime, and ofloxacin. Moreover, 63.72% of S. aureus isolates were positive for tetM, and the prevalence of msrB, blaZ, mecA, fexA, and tetK ranged from 21.24 to 6.19%. All S. aureus isolates harbored clfB and icaA genes, and the virulence genes hla (93.8%), hld (91.15%), clfA (90.27%), fnbA (86.73%), and hlb (83.19%), and tsst, icaD, sec, see, fnbB, and sea showed a varied prevalence ranging from 3.5 to 65.49%. All S. aureus isolates possessed the ability to form biofilms, and 30.09% of isolates showed strong biofilm formation abilities, while 19.47% of isolates were weak biofilm producers. Our results indicated that subclinical mastitis is prevalent in water buffaloes in Guangdong, China, and S. aureus is prevalent in samples from water buffaloes with subclinical mastitis. Most S. aureus isolates were susceptible to cephalosporins and fluoroquinolones; thus, ceftizoxime and cefoquinoxime can be used to treat subclinical mastitis in water buffaloes.
Collapse
Affiliation(s)
- Dexian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ximing Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiangyan Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xuzeng Shang
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Qingyou Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Nan Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hong Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
5
|
Rasheed H, Ijaz M, Muzammil I, Ahmed A, Anwaar F, Javed MU, Ghumman NZ, Raza A. Molecular evidence of β-lactam resistant Staphylococcus aureus in equids with respiratory tract infections: Frequency and resistance modulation strategy. Acta Trop 2023:106967. [PMID: 37315829 DOI: 10.1016/j.actatropica.2023.106967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The emergence of antimicrobial-resistant strains in Staphylococcus aureus (β-lactam and methicillin-resistant) is an overwhelming issue worldwide. Using the purposive sampling technique, 217 equids samples were collected from district Layyah which were subjected to culturing followed by genotypic identification of mecA and blaZ genes by PCR. This study revealed that by phenotypic methods, a prevalence of 44.24%, 56.25%, and 47.92% was found for S. aureus, MRSA, and β-lactam resistant S. aureus in equids. While genotypically, MRSA was found in 29.63% and β-lactam resistant S. aureus in 28.26% of equids. In-vitro antibiotic susceptibility testing against S. aureus isolates harboring both mecA and blaZ genes showed a high resistance against Gentamicin (75%), followed by Amoxicillin (66.67%) and Trimethoprim+sulfamethoxazole (58.34%). In an attempt to re-sensitize the resistant bacteria to antibiotics, a combination of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) was used which revealed synergistic effect of Gentamicin and Trimethoprim+sulfamethoxazole with Phenylbutazone; and Amoxicillin with Flunixin meglumine. Analysis of risk factors revealed significant association with the S. aureus-associated respiratory infection in equids. Phylogenetic analysis of mecA and blaZ genes showed a high resemblance of study isolate's sequences with each other and variable resemblance with already reported isolates obtained from different samples of neighboring countries. This study reports the first molecular characterization and phylogenetic analysis of β-lactam and methicillin resistant S. aureus in equids in Pakistan. Moreover, this study will help in the resistance modulation of resistant antibiotics (Gentamicin, Amoxicillin, Trimethoprim+sulfamethoxazole) and provide a good insight into planning an effective therapeutic regime.
Collapse
Affiliation(s)
- Hamza Rasheed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan.
| | - Iqra Muzammil
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| | - Arslan Ahmed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| | - Farwa Anwaar
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| | - Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| | - Nauman Zaheer Ghumman
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| | - Ahmed Raza
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000, Lahore-Pakistan
| |
Collapse
|
6
|
Shoaib M, Xu J, Meng X, Wu Z, Hou X, He Z, Shang R, Zhang H, Pu W. Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Front Cell Infect Microbiol 2023; 13:1183390. [PMID: 37265496 PMCID: PMC10230075 DOI: 10.3389/fcimb.2023.1183390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Non-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China. Methods In this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively. Results In total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7. Conclusion These findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jie Xu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoqin Meng
- Lanzhou Center for Animal Disease Control and Prevention, Lanzhou, China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| |
Collapse
|
7
|
Shoaib M, Aqib AI, Muzammil I, Majeed N, Bhutta ZA, Kulyar MFEA, Fatima M, Zaheer CNF, Muneer A, Murtaza M, Kashif M, Shafqat F, Pu W. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front Microbiol 2023; 13:1067284. [PMID: 36704547 PMCID: PMC9871788 DOI: 10.3389/fmicb.2022.1067284] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is recognized as commensal as well as opportunistic pathogen of humans and animals. Methicillin resistant strain of S. aureus (MRSA) has emerged as a major pathogen in hospitals, community and veterinary settings that compromises the public health and livestock production. MRSA basically emerged from MSSA after acquiring SCCmec element through gene transfer containing mecA gene responsible for encoding PBP-2α. This protein renders the MRSA resistant to most of the β-lactam antibiotics. Due to the continuous increasing prevalence and transmission of MRSA in hospitals, community and veterinary settings posing a major threat to public health. Furthermore, high pathogenicity of MRSA due to a number of virulence factors produced by S. aureus along with antibiotic resistance help to breach the immunity of host and responsible for causing severe infections in humans and animals. The clinical manifestations of MRSA consist of skin and soft tissues infection to bacteremia, septicemia, toxic shock, and scalded skin syndrome. Moreover, due to the increasing resistance of MRSA to number of antibiotics, there is need to approach alternatives ways to overcome economic as well as human losses. This review is going to discuss various aspects of MRSA starting from emergence, transmission, epidemiology, pathophysiology, disease patterns in hosts, novel treatment, and control strategies.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Iqra Muzammil
- Department of Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noreen Majeed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Kashif
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Furqan Shafqat
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Drug repurposing strategy: An emerging approach to identify potential therapeutics for treatment of bovine mastitis. Microb Pathog 2022; 171:105691. [PMID: 35995254 DOI: 10.1016/j.micpath.2022.105691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
The current study was designed to characterize methicillin-resistant Staphylococcus aureus (MRSA) isolated from bovine milk, along with its response to antibiotics, and ultimately reverse its mechanism of resistance by modulation with non-antibiotics. The synergistic combination of antibiotics with NSAIDs were tested in-vivo by giving MRSA challenge to rabbits. The current study reported an overall 23.79% prevalence of MRSA. The BLAST alignment of current study sequences revealed 99% similarity with mecA gene of MRSA from NCBI database. The current study isolates were more similar to each other and also with reference sequences as compared to other mecA gene sequences from Turkey, India, and Russia. Antibiogram of MRSA isolates showed a highly resistant response to cefoxitin, amoxicillin, and gentamicin. Amoxicillin, gentamicin, tylosin, vancomycin, and ciprofloxacin elicited a significant response (p < 0.05) in combination with non-antibiotics against tested MRSA isolates. The highest zone of inhibition (ZOI) increase was noted for vancomycin in combination with flunixin meglumine (145.45%) and meloxicam (139.36%); gentamicin with flunixin meglumine (85.71%) and ciprofloxacin with ivermectin (71.13%). Synergistic behavior was observed in the combination of gentamicin with ketoprofen; sulfamethoxazole and oxytetracycline with meloxicam. Hematological analysis showed significant differences (p < 0.05) among lymphocyte count and bilirubin. On histopathological examination of skin tissue, hyperplasia of epithelium, sloughed off epidermis, hyperkeratosis, infiltration of inflammatory cells, and hemorrhages were observed. The highest cure rate was observed in case of gentamicin in combination with ketoprofen as compared to other treatment groups. The current study concluded antibiotics in combination with non-antibiotics as potential therapeutic agents for resistance modulation against MRSA. This study will help to devise treatment and control strategies against bovine mastitis. Although the prospect of using NSAIDs to manage infections caused by MRSA appears to be a promising direction, further studies should be conducted to test these medications using suitable in-vivo models in controlled clinical trials to justify their repurposing as a treatment for MRSA infections.
Collapse
|
9
|
Ma Y, Khan MZ, Xiao J, Alugongo GM, Chen X, Li S, Wang Y, Cao Z. An Overview of Waste Milk Feeding Effect on Growth Performance, Metabolism, Antioxidant Status and Immunity of Dairy Calves. Front Vet Sci 2022; 9:898295. [PMID: 35656173 PMCID: PMC9152456 DOI: 10.3389/fvets.2022.898295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Waste milk (WM) is a part of the milk produced on dairy farms, which is usually unsuitable for human consumption. The WM contains transition milk, mastitis milk, colostrum, milk with somatic cells, blood (Hemolactia), harmful pathogens, pathogenic and antibiotic residues. Due to the high cost of milk replacer (MR), dairy farmers prefer raw WM to feed their calves. It has been well established that WM has a greater nutritive value than MR. Hence WM can contribute to improved growth, rumen development, and immune-associated parameters when fed to dairy calves. However, feeding raw WM before weaning has continuously raised some critical concerns. The pathogenic load and antibiotic residues in raw WM may increase the risk of diseases and antibacterial resistance in calves. Thus, pasteurization has been recommended as an effective method to decrease the risk of diseases in calves by killing/inhibiting the pathogenic microorganisms in the raw WM. Altogether, the current review provides a brief overview of the interplay between the positive role of raw WM in the overall performance of dairy calves, limitations of raw WM as a feed source and how to overcome these issues arising from feeding raw WM.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
10
|
Ali MMA, Husain TK, Ali AH, Mahmood AR, Alheety MA, Singh PK. Ag-Ag2O-TiO2@Eggshell membrane polymer nanocomposite: Conductivity and healing the wound infected with S. aureus studies ICSEM-2021. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221075318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural polymer-containing nanocomposite (Ag-Ag2O-TiO2@Eggshell membrane protein) was prepared using a rapid and efficient one-pot method. Diagnosis of this nanostructure was performed by X-ray diffraction, Energy dispersive X-ray, and SEM. The characterization results proved that this multifunctional nanocomposite was successfully synthesized within the scale of nanoscience. The conductivity of this polymer was studied in the presence of sodium iodide using acetonitrile as a solvent by complex impedance spectroscopy. The conductivity measurements prove that the highest conductivity was obtained with the highest salt concentration 1:5=Na:O. Furthermore, Ag-Ag2O-TiO2@Eggshell membrane protein nanocomposite was used to study its ability for healing the wound infected with antibiotic-resistant Staphylococcus aureus for 2 weeks. The histopathological results have shown that there is an improvement in all the indicative signs of disease with rapid development of the epidermal layer proliferating and then healing of the infected wounds rapidly.
Collapse
Affiliation(s)
- Majeed MA Ali
- Department of Nursing, Al-Hadi University College, Baghdad, Iraq
| | - Talib Kh. Husain
- Department of Nursing, Al-Hadi University College, Baghdad, Iraq
| | - Aisha H Ali
- Department of Tikrit Education, Directorate of Salah El-din, Ministry of Education, Tikrit, Iraq
| | - Ahmed R Mahmood
- Department of Medical Laboratory Technology, Imam Ja’afar Al-Sadiq University, Kirkuk, Iraq
| | | | - Pramod K Singh
- Center of Excellence on Solar Cells & Renewable Energy, Department of Physics, School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| |
Collapse
|
11
|
Shafique L, Wu S, Aqib AI, Ali MM, Ijaz M, Naseer MA, Sarwar Z, Ahmed R, Saleem A, Qudratullah, Ahmad AS, Pan H, Liu Q. Evidence-Based Tracking of MDR E. coli from Bovine Endometritis and Its Elimination by Effective Novel Therapeutics. Antibiotics (Basel) 2021; 10:997. [PMID: 34439047 PMCID: PMC8388920 DOI: 10.3390/antibiotics10080997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant bacteria have become the predominant etiology of endometritis and thus require effective treatment approaches. We used ultrasonography coupled with clinical signs and presented complaints of reproductive issues to investigate the epidemiology, phylogenetic analysis, antimicrobial resistance, and development of novel therapeutics against Escherichia coli isolated from endometritis in bovine (n = 304 from 10 commercial dairy farms). The prevalence of bovine endometritis in this study was 43.75%, while among these, 72.18% samples were positive for E. coli. Nucleotide analysis performed through BLAST and MEGAX showed 98% similarity to the nucleotide sequence of the reference E. coli strain (accession number CP067311.1). The disk diffusion assay revealed pathogen resistance to most antibiotics. Pattern of MIC order of resistance was as follows: enrofloxacin < gentamicin < co-amoxiclav < streptomycin < amoxicillin < metronidazole < oxytetracycline. Field trials revealed the highest recovery rate (in terms of clearance of endometritis and establishment of pregnancy) in case of gentamicin + enrofloxacin (100%) and gentamicin alone (100%), followed by co-amoxiclav + gentamicin (84.61%), oxytetracycline alone (78.57%), and metronidazole + enrofloxacin (33.33%). Hence, the current study reported a higher prevalence of multidrug-resistant E. coli showing considerable similarity with reference strain, and finally, the effective response of novel antibiotics to treat cases.
Collapse
Affiliation(s)
- Laiba Shafique
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| | - Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Misbah Ijaz
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan; (M.I.); (M.A.N.)
| | - Muhammad Aamir Naseer
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan; (M.I.); (M.A.N.)
| | - Zaeem Sarwar
- Department of Theriogenology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Rais Ahmed
- Central Diagnostic Laboratory, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Arslan Saleem
- Department of Geography, Government College University, Lahore 54000, Pakistan;
| | - Qudratullah
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Abdullah Saghir Ahmad
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| |
Collapse
|