1
|
Mahnoor, Malik K, Kazmi A, Sultana T, Raja NI, Bibi Y, Abbas M, Badruddin IA, Ali MM, Bashir MN. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon 2025; 11:e41654. [PMID: 39916856 PMCID: PMC11800088 DOI: 10.1016/j.heliyon.2025.e41654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The importance of nanocomposites constantly attains attention because of their unique properties all across the fields especially in medical perspectives. The study of green-synthesized nanocomposites has grown to be extremely fascinating in the field of research. Nanocomposites are more promising than mono-metallic nanoparticles because they exhibit synergistic effects. This review encapsulates the current development in the formulation of plant-mediated nanocomposites by using several plant species and the impact of secondary metabolites on their biocompatible functioning. Phyto-synthesis produces diverse nanomaterials with biocompatibility, environment-friendliness, and in vivo actions, characterized by varying sizes, shapes, and biochemical nature. This process is advantageous to conventional physical and chemical procedures. New studies have been conducted to determine the biomedical efficacy of nanocomposites against various diseases. Unfortunately, there has been inadequate investigation into green-assisted nanocomposites. Incorporating phytosynthesized nanocomposites in therapeutic interventions not only enhances healing processes but also augments the host's immune defenses against infections. This review highlights the phytosynthesis of nanocomposites and their various biomedical applications, including antibacterial, antidiabetic, antiviral, antioxidant, antifungal, anti-cancer, and other applications, as well as their toxicity. This review also explores the mechanistic action of nanocomposites to achieve their designated tasks. Biogenic nanocomposites for multimodal imaging have the potential to exchange the conventional methods and materials in biomedical research. Well-designed nanocomposites have the potential to be utilized in various biomedical fields as innovative theranostic agents with the subsequent objective of efficiently diagnosing and treating a variety of human disorders.
Collapse
Affiliation(s)
- Mahnoor
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Khafsa Malik
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tahira Sultana
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animal Science Lahore (Jhang Campus), Jhang, 35200, Pakistan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - M. Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| | - Muhammad Nasir Bashir
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
- National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
3
|
Larrañaga-Tapia M, Betancourt-Tovar B, Videa M, Antunes-Ricardo M, Cholula-Díaz JL. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. NANOSCALE ADVANCES 2023; 6:51-71. [PMID: 38125589 PMCID: PMC10729871 DOI: 10.1039/d3na00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The world faces threats that the United Nations has classified into 17 categories with different objectives as solutions for each challenge that are enclosed in the Sustainable Development Goals (SDGs). These actions involved the widespread use of science and technology as pathways to ensure their implementation. In this regard, sustainability science seeks the research community's contribution to addressing sustainable development challenges. Specifically, nanotechnology has been recognized as a key tool to provide disruptive and effective strategies to reach the SDGs. This review proposes the application of bimetallic nanoparticle substances capable of providing possible solutions to achieve target SDG 3: good health and well-being, SDG 6: clean water and sanitation, and SDG 12: responsible consumption and production. Furthermore, the term green nanotechnology is introduced in each section to exemplify how green synthesized bimetallic nanoparticles have been used to resolve each target SDG. This review also outlines the current scenario regarding the utilization of metallic nanomaterials in the market, together with the upscaling challenges and the lack of understanding of the long-term effects and hazards to the environment regarding bimetallic nanoparticles.
Collapse
Affiliation(s)
- Mariana Larrañaga-Tapia
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Benjamín Betancourt-Tovar
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marcelo Videa
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marilena Antunes-Ricardo
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
- Institute for Obesity Research, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| |
Collapse
|
4
|
Sulistyarti H, Utama MM, Fadhila AM, Cahyaningrum A, Murti RJ, Febriyanti A. Green synthesis of silver nanoparticles using Coffea canephora fruit skin extract and its application for mercury detection in face cream samples. ANAL SCI 2023; 39:335-346. [PMID: 36580077 PMCID: PMC9797893 DOI: 10.1007/s44211-022-00237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022]
Abstract
Mercury is one of the most toxic heavy metals causing harmful effects on the human body; meanwhile, mercury is found in some face cream products to give a whitening effect. The upper limit concentration of mercury in skin-lightening products defined by the Food and Drug Administration (FDA) is under one mg/L as Hg2+. A new green analytical spectrophotometric method for mercury analysis has been developed by employing a biological reagent from fruit skin extract of robusta coffee (Coffea canephora) as a bioreductor for silver ions as well as a stabilizer for the AgNPs product. The detection principle of this method is based on the decrease of the color intensity of silver nanoparticles (AgNPs) after the addition of Hg2+ ions due to the re-oxidization of the AgNPs by Hg2+ ions to colorless Ag+ ions. To achieve the most significant sensitivity, linearity of measurement, and validity, the method was optimized toward the volume of AgNPs and reaction time. In this research, the synthesized AgNPs were also characterized by UV-Vis Spectrometry as well as a particle size analyzer (PSA) to determine the size of nanoparticles. The result showed that the optimum conditions were attained at 4 mL AgNPs solution and 3-min reaction resulting in a linear measurement of Hg2+ in the range of 0-15 mg/L with LOD and LOQ of 0.039 and 0.130 mg/L, respectively. This method is quite selective and has been validated by applying it to real face cream samples with satisfactory results supported by average recoveries of close to 100%.
Collapse
Affiliation(s)
- Hermin Sulistyarti
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 1, Malang, 65145, Indonesia. .,LCAMIA: Research Centre for Low Cost and Automated Method and Instrumentation Analysis, Brawijaya University, Malang, 65145, Indonesia.
| | - Muhammad Mashuri Utama
- grid.411744.30000 0004 1759 2014Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 1, Malang, 65145 Indonesia
| | - Ari Muchson Fadhila
- grid.411744.30000 0004 1759 2014Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 1, Malang, 65145 Indonesia
| | - Anggita Cahyaningrum
- grid.411744.30000 0004 1759 2014Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 1, Malang, 65145 Indonesia
| | - Revika Julia Murti
- grid.411744.30000 0004 1759 2014Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 1, Malang, 65145 Indonesia
| | - Ayu Febriyanti
- grid.411744.30000 0004 1759 2014Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 1, Malang, 65145 Indonesia
| |
Collapse
|
5
|
Anjum S, Nawaz K, Ahmad B, Hano C, Abbasi BH. Green synthesis of biocompatible core-shell (Au-Ag) and hybrid (Au-ZnO and Ag-ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv 2022; 12:23845-23859. [PMID: 36093232 PMCID: PMC9396731 DOI: 10.1039/d2ra03196e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The fabrication of bimetallic nanoparticles (BNPs) using plant extracts is applauded since it is an environmentally and biologically safe method. In this research, Manilkara zapota leaf extract was utilized to bioreduce metal ions for the production of therapeutically important core-shell Au-Ag and hybrid (Au-ZnO and Ag-ZnO) BNPs. The phytochemical profiling of the leaf extract in terms of total phenolic and flavonoid content is attributed to its high free radical scavenging activity. FTIR data also supported the involvement of these phytochemicals (polyphenols, flavonoids, aromatic compounds and alkynes) in the synthesis of BNPs. Whereas, TEM and XRD showed the formation of small sized (16.57 nm) spherical shaped core-shell Au-Ag BNPs and ZnO nano-needles with spherical AuNPs (48.32 nm) and ZnO nano-rods with spherical AgNP (19.64 nm) hybrid BNPs. The biological activities of BNPs reinforced the fact that they show enhanced therapeutic efficacy as compared to their monometallic components. All BNPs showed comparable antibacterial activities as compared to standard tetracycline discs. While small sized Au-Ag BNPs were most effective in killing human hepato-cellular carcinoma cells (HepG2) in terms of lowest cell viability, highest intracellular ROS/RNS production, loss of mitochondrial membrane potential, induction of caspase-3 gene expression and enhanced caspase-3/7 activity. BNPs also effectively inhibited advanced glycation end products and carbohydrate digesting enzymes which can be used as a nano-medicine for aging and diabetes. The most important finding was the permissible biocompatibility of these BNPs towards brine shrimp larvae and human RBCs, which suggests their environmental and biological safety. This research study gives us insight into the promise of using a green route to synthesize commercially important BNPs with enhanced therapeutic efficacy as compared to conventional treatment options.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Khadija Nawaz
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Bushra Ahmad
- Department of Biochemistry, Shaheed Benzair Bhutto Women University Peshwar-25120 Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans 45067 Orléans Cedex 2 France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan
| |
Collapse
|
6
|
Kalse S, Swami S. Recent application of jackfruit waste in food and material engineering: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Berta L, Coman NA, Rusu A, Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. MATERIALS 2021; 14:ma14247677. [PMID: 34947271 PMCID: PMC8705710 DOI: 10.3390/ma14247677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.
Collapse
Affiliation(s)
- Lavinia Berta
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Năstaca-Alina Coman
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
8
|
A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. WATER 2021. [DOI: 10.3390/w13162216] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent developments in nanoscience have appreciably modified how diseases are prevented, diagnosed, and treated. Metal nanoparticles, specifically silver nanoparticles (AgNPs), are widely used in bioscience. From time to time, various synthetic methods for the synthesis of AgNPs are reported, i.e., physical, chemical, and photochemical ones. However, among these, most are expensive and not eco-friendly. The physicochemical parameters such as temperature, use of a dispersing agent, surfactant, and others greatly influence the quality and quantity of the synthesized NPs and ultimately affect the material’s properties. Scientists worldwide are trying to synthesize NPs and are devising methods that are easy to apply, eco-friendly, and economical. Among such strategies is the biogenic method, where plants are used as the source of reducing and capping agents. In this review, we intend to debate different strategies of AgNP synthesis. Although, different preparation strategies are in use to synthesize AgNPs such as electron irradiation, optical device ablation, chemical reduction, organic procedures, and photochemical methods. However, biogenic processes are preferably used, as they are environment-friendly and economical. The review covers a comprehensive discussion on the biological activities of AgNPs, such as antimicrobial, anticancer anti-inflammatory, and anti-angiogenic potentials of AgNPs. The use of AgNPs in water treatment and disinfection has also been discussed in detail.
Collapse
|
9
|
Green Synthesis of Ag-Au Bimetallic Nanocomposites Using Waste Tea Leaves Extract for Degradation Congo Red and 4-Nitrophenol. SUSTAINABILITY 2021. [DOI: 10.3390/su13063318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sustainable supply of pure water is a great challenge in most developing and third-world countries. Nanomaterial-based technology offers technological development for wastewater purification. Nanocatalysis hydrogenation of nitroarene and dye molecules is a hot model in many research fields. Herein, we report eco-friendly and facile technology to synthesize Ag-Au bimetallic nanocomposites. The synthesized nanocomposites are characterized by ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The synthesized nanocomposite can efficiently degrade Congo red and 4-nitrophenol in water and in the presence of sodium borohydride. The results show that it degrades Congo red and 4-nitrophenol entirely within 6 and 7 min, respectively. These results could be useful for the green synthesis of Ag-Au bimetallic nanocomposites and help to remove organic dye molecules and nitroaromatics from wastewater.
Collapse
|