1
|
Khumphon J, Ahmed R, Imboon T, Giri J, Chattham N, Mohammad F, Kityakarn S, Mangala Gowri V, Thongmee S. Boosting Photocatalytic Activity in Rhodamine B Degradation Using Cu-Doped ZnO Nanoflakes. ACS OMEGA 2025; 10:9337-9350. [PMID: 40092784 PMCID: PMC11904667 DOI: 10.1021/acsomega.4c10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
The present investigation examined how substituting some Cu2+ ions for Zn2+ ions could increase zinc oxide (ZnO) photocatalytic activity toward the reduction of Rhodamine B. Phase composition, the presence of functional groups, optical properties, emission spectra, and surface morphology of ZnO nanoflakes (NFs) were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis), photoluminescence (PL) spectrophotometer, and scanning electron microscopy (SEM). To investigate the photocatalytic capabilities of Cu-doped ZnO NFs driven by visible light/sunlight, Rhodamine B dyes were photocatalytically degraded in water using UV-visible absorption spectroscopy. Using Williamson-Hall analysis of the XRD data, it was discovered that the internal strain of the Cu-doped ZnO NFs was altered. UV-vis absorption showed that the energy gap of the semiconducting ZnO NFs shrank when Cu was substituted. FT-IR studies revealed that the surface of the Cu-doped ZnO NFs contained greater amounts of reactive oxidizing species. PL studies revealed that the ZnO NFs' surface defects were being caused by the Cu substitution. According to SEM research, more surface fault NFs formed when the concentration of Cu increased. The photocatalytic activity was enhanced by the production of these NFs. The UV-vis absorption spectra showed that Cu-doped ZnO NFs were more effective than pure ZnO at degrading the rhodamine B dye (RhB). Finally, it was shown that replacing Zn2+ ions with Cu2+ ions improved the photodegradation of the rhodamine B dye. According to this study, Cu-doped ZnO NFs are an excellent choice for wastewater treatment.
Collapse
Affiliation(s)
- Jeerawan Khumphon
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Ramzan Ahmed
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Department
of Applied Biology, University of Science
and Technology Meghalaya, Ri-Bhoi, India, 793101
| | - Tanawat Imboon
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Jayant Giri
- Department
of Mechanical Engineering, Yeshwantrao Chavan
College of Engineering, Nagpur 441110, India
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, India
- Centre
for Research Impact & Outcome, Chitkara University Institute of
Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Nattaporn Chattham
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Faruq Mohammad
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sutasinee Kityakarn
- Department
of Chemistry,Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Advanced
Porous Materials for One Health Integrations (APM Unit), Kasetsart University, Bangkok 10900, Thailand
| | | | - Sirikanjana Thongmee
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Li Y, Lin L, Wu F, Xu L, Zhang Y, Xia X, Cao C, Zhou W, Xiao L, Qian Q, Chen Q. In situ modification of bismuth oxyhalide photocatalysts with natural chlorophyll for enhanced photocatalytic performance. RSC Adv 2025; 15:4820-4828. [PMID: 39957815 PMCID: PMC11822768 DOI: 10.1039/d5ra00008d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Bismuth oxyhalides (BiOX) exhibit limited sunlight absorption and utilization, presenting a challenge for their effectiveness in photocatalytic applications. This study draws inspiration from the sensitization effects of natural chlorophyll on semiconductor photocatalysts, achieving in situ synthesis of chlorophyll-sensitized BiOX photocatalysts through a precipitation method. The photocatalytic activity of these materials was evaluated under blue light irradiation (410-420 nm LED) using Rhodamine B (RhB) as a model pollutant. Experimental results reveal that chlorophyll derived from Chlorella effectively sensitized BiOX samples, changed them specific surface area, and surface potential, thereby enhancing RhB degradation efficiency. Among the as-prepared BiOX materials, BiOBr demonstrated the most pronounced improvement, achieving a 97.8% degradation rate for 20 mg per L RhB within 90 min after sensitization. Mechanistic investigations through free radical trapping experiments identified superoxide radicals (˙O2 -), photogenerated electrons (e-) and holes (h+) as the key reactive species driving RhB degradation. This study underscores the critical role of chlorophyll sensitization in improving the photocatalytic efficiency of BiOX and provides a comparative analysis of the photocatalytic performance of BiOCl, BiOBr, and BiOI. The findings offer valuable perspectives for the advancement and practical implementation of sensitized photocatalysts in environmental remediation.
Collapse
Affiliation(s)
- Yan Li
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Liangbin Lin
- College of Environmental and Resource Sciences, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Fengrui Wu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Lihong Xu
- College of Materials Science and Engineering, Fujian University of Technology Fuzhou 350117 China
| | - Yi Zhang
- College of Materials Science and Engineering, Fujian University of Technology Fuzhou 350117 China
| | - Xinshu Xia
- College of Environmental and Resource Sciences, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Changlin Cao
- College of Environmental and Resource Sciences, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Weiming Zhou
- College of Environmental and Resource Sciences, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Liren Xiao
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
| |
Collapse
|
3
|
Edwin MHM, Sundara Raj AS, Mani A, Sillanpää M, Al-Farraj S. Green synthesis of Vitis vinifera extract-appended magnesium oxide NPs for biomedical applications. NANOTECHNOLOGY REVIEWS 2024; 13. [DOI: 10.1515/ntrev-2024-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Biologically active magnesium oxide (MgO) nanoparticles were synthesised using green reduction with an extract derived from the Vitis vinifera plant. The investigation focused on examining the structure and carbon abundance resulting from the thermal degradation of adsorbed biomolecules. It was accomplished using powder X-ray diffraction, Raman spectroscopy, and FT-IR analysis techniques. X-ray photoelectron spectroscopy studies conducted on MgO nanoparticles indicate the absence of any supplementary peaks, thereby indicating the purity of the material. The morphological characteristics, which have been examined using field emission scanning electron microscopy and TEM methodologies, demonstrate the presence of particles with a spherical shape, exhibiting minimal agglomeration and a uniform distribution across the surfaces of MgO. The porous structure, porosity, and pore volume of the MgO particles were evaluated using Brunauer-Emmett-Teller surface analysis. The experimental findings reveal that the surface area of the MgO nanoparticles is 23.8742 m2/g, while the total pore volume is 0.12528 cm3/g. Additionally, the average pore diameter is determined to be 1.7 nm. These observations collectively suggest the presence of microporous structures within the MgO nanoparticles. This article discusses the biological studies to assess the antibacterial, antifungal, anti-inflammatory, and anti-diabetic activities of the synthesised MgO nanoparticles.
Collapse
Affiliation(s)
- Mary Harli Mol Edwin
- Research Scholar, Department of Physics, St. Jude’s College , Thoothor , Tamil Nadu, 629176 , India
- Affiliated to Manonmanium Sundaranar University , Tirunelveli , Tamil Nadu, 627012 , India
| | - Ajin Sundar Sundara Raj
- Department of Physics, St. Jude’s College , Thoothor , Tamil Nadu, 629176 , India
- Affiliated to Manonmanium Sundaranar University , Tirunelveli , Tamil Nadu, 627012 , India
| | - Aravind Mani
- Department of Physics, National Engineering College, K.R. Nagar , Kovilpatti , Tamil Nadu, 628503 , India
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology , Mubarak Al-Abdullah , 32093, Kuwait , Kuwait
- Adnan Kassar School of Business, Lebanese American University , Beirut , Lebanon
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University , Rajpura , 140401, Punjab , India
- Division of Research & Development, Lovely Professional University , Phagwara , 144411, Punjab , India
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
4
|
Parastar Gharehlar M, Sheshmani S, Nikmaram FR, Doroudi Z. Synergistic potential in spinel ferrite MFe 2O 4 (M = Co, Ni) nanoparticles-mediated graphene oxide: Structural aspects, photocatalytic, and kinetic studies. Sci Rep 2024; 14:4625. [PMID: 38409231 PMCID: PMC10897457 DOI: 10.1038/s41598-024-55452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
The existence of artificial dyes in water is a significant environmental concern, as it can lead to poor water quality. Photodegradation is becoming an increasingly popular method for treating water contaminated with dyes. In this study, the photodegradation of Reactive Red 66 and Reactive Red 120 dyes, as well as textile wastewater, was investigated under UV and visible light irradiation. To enhance the photoresponse of the MFe2O4 (M = Co, Ni) nanoparticles, modifications were made by incorporating graphene oxide. The MFe2O4 nanoparticles and MFe2O4/GO nanocomposite photocatalysts were subjected to several characterization techniques, including FT-IR, Raman spectroscopy, XRD, DRS, zeta potential, VSM, TGA, DSC, BET, SEM, and EDAX analysis. Experiments were conducted to optimize several key parameters involved in the photodegradation process, including pH, photocatalyst dosage, initial dye concentration, and irradiation time. The removal efficiency of Reactive Red 66 and Reactive Red 120 dyes using CoFe2O4 nanoparticles was found to be 86.97 and 82.63%, respectively. Also, the removal percentage of these dyes using CoFe2O4/GO nanocomposite photocatalyst was 95.57 and 90.9% for Reactive Red 66 and Reactive Red 120, respectively. Experiments found that NiFe2O4 nanoparticles removed 90.92% of Reactive Red 66 dye and 84.7% of Reactive Red 120 dye. The NiFe2O4/GO nanocomposite photocatalyst showed even higher removal efficiencies, degrading 97.96% of Reactive Red 66 and 93.44% of Reactive Red 120. After three days of exposure to visible light irradiation, the removal percentage of Reactive Red 66 using MFe2O4 and MFe2O4/GO nanocomposite was investigated.
Collapse
Affiliation(s)
- Mahnaz Parastar Gharehlar
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Farrokh Roya Nikmaram
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Doroudi
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Al-Farraj ES, Abdelrahman EA. Efficient Photocatalytic Degradation of Congo Red Dye Using Facilely Synthesized and Characterized MgAl 2O 4 Nanoparticles. ACS OMEGA 2024; 9:4870-4880. [PMID: 38313534 PMCID: PMC10831849 DOI: 10.1021/acsomega.3c08485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
The discharge of congo red dye into water sources by factories has been associated with a range of health concerns, such as cancer, redness, skin irritation, and allergic reactions. As a result, this research focused on the cost-effective and straightforward production of MgAl2O4 nanoparticles by using the Pechini sol-gel process. Subsequently, these nanoparticles were employed for the successful photocatalytic decomposition of congo red dye. Moreover, extensive characterization of the fabricated MgAl2O4 nanoparticles was conducted through diverse methodologies, which included Fourier-transform infrared spectroscopy, ultraviolet-visible spectrophotometry, high-resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy (FE-SEM), and powder X-ray diffraction (XRD). Furthermore, the XRD analysis disclosed that the average crystal size of the produced MgAl2O4 nanoparticles is 10.36 nm, and their optical energy gap was determined to be 3.71 eV. The FE-SEM examination unveiled a combination of spherical and disorganized structures with a 0.14 μm average grain size. HR-TEM analysis, in turn, revealed that the fabricated MgAl2O4 nanoparticles were composed of minuscule spherical particles with an average diameter of 8.75 nm. The maximum degradation of 50 mL of congo red dye at a concentration of 25 mg/L reached 99.27% within 80 min at a pH of 3. Additionally, the findings confirmed the consistent decomposition activity toward congo red dye even after four cycles, thereby validating the effectiveness and reusability of the MgAl2O4 nanoparticles that were developed in this study.
Collapse
Affiliation(s)
- Eida S. Al-Farraj
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ehab A. Abdelrahman
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
6
|
Ganguli AK, Kunde GB, Raza W, Kumar S, Yadav P. Assessment of Performance of Photocatalytic Nanostructured Materials with Varied Morphology Based on Reaction Conditions. Molecules 2022; 27:molecules27227778. [PMID: 36431879 PMCID: PMC9696975 DOI: 10.3390/molecules27227778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Synthesis of nanomaterials with specific morphology is an essential aspect for the optimisation of its properties and applications. The application of nanomaterials is being discussed in a wide range of areas, one of which is directly relevant to the environment through photocatalysis. To produce an effective photocatalyst for environmental applications, morphology plays an important role as it affects the surface area, interfaces, crystal facets and active sites, which ultimately affects efficiency. The method of synthesis and synthesis temperature can be the basic considerations for the evaluation of a particular nanomaterial. In this study, we have considered the aspects of morphology with a basic understanding and analyzed them in terms of nanomaterial efficacy in photocatalysis. Different morphologies of specific nanomaterials such as titanium dioxide, zinc oxide, silver phosphate, cadmium sulphide and zinc titanate have been discussed to come to reasonable conclusions. Morphologies such as nanorods, nanoflower, nanospindles, nanosheets, nanospheres and nanoparticles were compared within and outside the domain of given nanomaterials. The different synthesis strategies adopted for a specific morphology have been compared with the photocatalytic performance. It has been observed that nanomaterials with similar band gaps show different performances, which can be linked with the reaction conditions and their nanomorphology as well. Materials with similar morphological structures show different photocatalytic performances. TiO2 nanorods appear to have the best features of efficient photocatalyst, while the nanoflowers show very low efficiency. For CdS, the nanoflower is the best morphology for photocatalysis. It appears that high surface area is the key apart from the morphology, which controls the efficiency. The overall understanding by analyzing all the available information has enumerated a path to select an effective photocatalyst amongst the several nanomaterials available. Such an analysis and comparison is unique and has provided a handle to select the effective morphology of nanomaterials for photocatalytic applications.
Collapse
Affiliation(s)
- Ashok Kumar Ganguli
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Correspondence: (A.K.G.); (G.B.K.); Tel.: +91-11-26591511 (A.K.G.); +91-77-38611349 (G.B.K.)
| | - Gajanan B. Kunde
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Correspondence: (A.K.G.); (G.B.K.); Tel.: +91-11-26591511 (A.K.G.); +91-77-38611349 (G.B.K.)
| | - Waseem Raza
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Biogenic gold nanoparticles from Gelidiella acerosa: bactericidal and photocatalytic degradation of two commercial dyes. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Krishna PG, Chandra Mishra P, Naika MM, Gadewar M, Ananthaswamy PP, Rao S, Boselin Prabhu SR, Yatish KV, Nagendra HG, Moustafa M, Al-Shehri M, Jha SK, Lal B, Stephen Santhakumari SM. Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review. Front Chem 2022; 10:917831. [PMID: 36118313 PMCID: PMC9479337 DOI: 10.3389/fchem.2022.917831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Among many techniques that are employed toward the production of nanoparticles, synthesis using green technologies is the simplest and environment friendly. Nanoparticles produced from plant extracts have become a very popular subject of study in recent decades due to their diverse advantages such as low-cost synthesis, product stability, and ecofriendly protocols. These merits have prompted the development of nanoparticles from a variety of sources, including bacteria, fungi, algae, proteins, enzymes, etc., allowing for large-scale production with minimal contamination. However, nanoparticles obtained from plant extracts and phytochemicals exhibit greater reduction and stabilization and hence have proven the diversity of properties, like catalyst/photocatalyst, magnetic, antibacterial, cytotoxicity, circulating tumor deoxy ribo nucleic acid (CT-DNA) binding, gas sensing, etc. In the current scenario, nanoparticles can also play a critical role in cleaning wastewater and making it viable for a variety of operations. Nano-sized photocatalysts have a great scope toward the removal of large pollutants like organic dyes, heavy metals, and pesticides in an eco-friendly and sustainable manner from industrial effluents. Thus, in this review article, we discuss the synthesis of several metal nanoparticles using diverse plant extracts, as well as their characterization via techniques like UV–vis (ultraviolet–visible), XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), FTIR (Fourier transform infrared spectroscopy), etc., and catalytic activity on various hazardous systems.
Collapse
Affiliation(s)
- Prashanth Gopala Krishna
- Department of Chemistry, Sir M. Visvesvaraya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
- *Correspondence: Prashanth Gopala Krishna, , ; Saurabh Kumar Jha,
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Mutthuraju Mahadev Naika
- Department of Chemistry, Sai Vidya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | - Manoj Gadewar
- Department of Pharmacology, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | | - Srilatha Rao
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | | | | | - Holenarasipura Gundurao Nagendra
- Department of Bio Technology, Sir M. Visvesvaraya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- *Correspondence: Prashanth Gopala Krishna, , ; Saurabh Kumar Jha,
| | - Bharat Lal
- Department of Pharmaceutics, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | |
Collapse
|
9
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
10
|
Bhole R, Gonsalves D, Murugesan G, Narasimhan MK, Srinivasan NR, Dave N, Varadavenkatesan T, Vinayagam R, Govarthanan M, Selvaraj R. Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02532-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Modified Approach Using Mentha arvensis in the Synthesis of ZnO Nanoparticles—Textural, Structural, and Photocatalytic Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Zinc oxide arouses considerable interest since it has many applications—in microelectronics, environmental decontaminations, biomedicine, photocatalysis, corrosion, etc. The present investigation describes the green synthesis of nanosized ZnO particles using a low-cost, ecologically friendly approach compared to the classical methods, which are aimed at limiting their harmful effects on the environment. In this study, ZnO nanoparticles were prepared using an extract of Mentha arvensis (MA) leaves as a stabilizing/reducing agent, followed by hydrothermal treatment at 180 °C. The resulting powder samples were characterized by X-ray diffraction (XRD) phase analysis, infrared spectroscopy (IRS), scanning electron microscopy (SEM), and electron paramagnetic resonance (EPR). The specific surface area and pore size distribution were measured by the Brunauer–Emmett–Taylor (BET) method. Electronic paramagnetic resonance spectra were recorded at room temperature and at 123 K by a JEOL JES-FA 100 EPR spectrometer. The intensity of the bands within the range of 400–1700 cm−1 for biosynthesized ZnO (BS-Zn) powders decreased with the increase in the Mentha arvensis extract concentration. Upon increasing the plant extract concentration, the relative proportion of mesopores in the BS-Zn samples also increased. It was established that the photocatalytic performance of the biosynthesized powders was dependent on the MA concentration in the precursor solution. According to EPR and PL analyses, it was proved that there was a presence of singly ionized oxygen vacancies (V0+) and zinc interstitials (Zni). The use of the plant extract led to changes in the morphology, phase composition, and structure of the ZnO particles, which were responsible for the increased photocatalytic rate of discoloration of Malachite Green dye.
Collapse
|
12
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|