1
|
Abdelkader MS, Younis SA, El-Fawal EM, Ali HR, Ibrahim H. Hybridizing black liquor-derived kraft lignin with Ag 3PO 4@ZnO to boost tetracycline and dye removal through synergistic adsorption-photocatalytic pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125270. [PMID: 40239350 DOI: 10.1016/j.jenvman.2025.125270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Discharging pulping black liquor waste and industrial wastewater, such as that from the pharmaceuticals and textiles, into surface water can poses risks to both human health and aquatic ecosystems. Accordingly, this research introduces an innovative method for valorizing pulping black liquor waste by extracting kraft lignin (KL) as a sustainable biopolymer for constructing a ternary KL-supported Ag3PO4@ZnO p-n heterojunction (designated as AZC-KL(x), with x denotes the wt. % ratios of AZC (Ag3PO4@ZnO): KL at 1: 0.2, 1: 0.5, and 1: 1). The AZC-KL(x) composites are evaluated for the enhanced removal of mixed textile (e.g., methylene blue (MB) and methyl orange (MO) dyes) and pharmaceutical (e.g., tetracycline (TC)) pollutants through synergistic adsorption/photocatalytic mechanisms under dark/visible light conditions, in comparison to the pristine Ag3PO4@ZnO, as well as KL-supported Ag3PO4 or ZnO binary composites. In comparison to the AZC heterojunction, the AZC-KL(x) significantly improves the adsorption rate of three pollutants by a factor of 1.66 - 3.81. This enhancement is attributed to π-π stacking and hydrogen bonding with the oxygen-containing groups and aromatic structure of the KL substrate. In particular, AZC-KL(1) demonstrates superior adsorption-photocatalytic activity, sustaining its effectiveness over five cycles. It exhibits the highest removal rate for MB dye with a kapp of 3.26 × 10-2 min-1 and an apparent quantum yield (AQY) of 16.4 × 10-7 mol/E across 180 min of visible light irradiation, which is 6.4 and 9.5 times higher than that of TC and MO, respectively. Lowering the KL ratio to 1: 0.2 in the AZC-KL(x) structure leads to a performance decline by 1.18 - 2.1 times (relative to AZC-KL(1)), demonstrating the importance of KL in tailoring the surface chemistry and optoelectronic characteristics of AZC-KL(x), as verified by various analytical methods. This collaborative method lowers the energy required for effective wastewater treatment and decreases treatment costs, as demonstrated in the techno-economical analysis.
Collapse
Affiliation(s)
- Marwa S Abdelkader
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt; Chemistry Department, Faculty of Science, Cairo University, Egypt
| | - Sherif A Younis
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt.
| | - Esraa M El-Fawal
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt
| | - Hager R Ali
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt
| | - Hosny Ibrahim
- Chemistry Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
2
|
Vadia FY, Malek NI, Kailasa SK. Synthesis of Carbon Dots from Peltophorum Pterocarpum Flowers for Selective Fluorescence Detection of Carbendazim. J Fluoresc 2024:10.1007/s10895-024-03919-y. [PMID: 39227544 DOI: 10.1007/s10895-024-03919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
In this study, carbon dots (CDs) were synthesized from Peltophorum pterocarpum flowers as the precursor material using the hydrothermal method. The fluorescence emission spectra of the resulting Peltophorum pterocarpum CDs (PP-CDs) exhibited excitation-independent behavior, showing the fluorescence emission peak at 410 nm when excited at 330 nm. This method is simple, rapid and well consistent with the green chemistry and sustainable analytical method development. The as-synthesized PP-CDs acted as a promising fluorescent probe for detecting carbendazim (CBZ) via aggregation-induced emission mechanism, showing a linear response to CBZ concentrations ranging from 1 to 30 μM, with a detection limit of 5.41 nM. This method was successfully applied to quantify CBZ in food samples, achieving excellent recoveries of 99% with a relative standard deviation (RSD) of less than 2%.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
| |
Collapse
|
3
|
Moond M, Singh S, Rani J, Beniwal A, Sharma RK. Bio‐Fabricated Silver Nanoparticles for Catalytic Degradation of Toxic Dyes and Colorimetric Sensing of Hg 2+. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/25/2024] [Indexed: 01/06/2025]
Abstract
AbstractIn the present study, silver nanoparticles were synthesized via green synthesis using fenugreek (Trigonella foenum‐graecum L.) seeds of variety HM 425. The AgNPs were characterized by using UV‐Visible spectroscopy, Particle size analyzer, Field emission scanning electron microscopy coupled to Energy dispersive X‐ray spectroscopy, XRD, High resolution transmission electron microscopy and Fourier Transform Infrared Spectroscopy. The AgNPs were spherical and had an average particle size of 28 nm. The reduction of cationic dyes Methylene blue, Rhodamine B, and an anionic azo dye Methyl Orange by Sodium borohydride was used as a model reaction to investigate the catalytic ability of AgNPs. The results demonstrated an efficient catalytic dye degradation of methylene blue (95.81 %, 25 min, 0.1737±0.01 min−1), Rhodamine B (90.23 %, 15 min, 0.1388±0.01 min−1) and methyl orange (83.63 %, 39 min, 0.0412±0.002 min−1). The synthesized AgNPs had an excellent detection limit of 12.50 μM for Hg2+, making them excellent solid bio‐based sensors for mercury sensing.
Collapse
Affiliation(s)
- Monika Moond
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Sushila Singh
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Jyoti Rani
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Anuradha Beniwal
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Rajni Kant Sharma
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| |
Collapse
|
4
|
Edwin MHM, Sundara Raj AS, Mani A, Sillanpää M, Al-Farraj S. Green synthesis of Vitis vinifera extract-appended magnesium oxide NPs for biomedical applications. NANOTECHNOLOGY REVIEWS 2024; 13. [DOI: 10.1515/ntrev-2024-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Biologically active magnesium oxide (MgO) nanoparticles were synthesised using green reduction with an extract derived from the Vitis vinifera plant. The investigation focused on examining the structure and carbon abundance resulting from the thermal degradation of adsorbed biomolecules. It was accomplished using powder X-ray diffraction, Raman spectroscopy, and FT-IR analysis techniques. X-ray photoelectron spectroscopy studies conducted on MgO nanoparticles indicate the absence of any supplementary peaks, thereby indicating the purity of the material. The morphological characteristics, which have been examined using field emission scanning electron microscopy and TEM methodologies, demonstrate the presence of particles with a spherical shape, exhibiting minimal agglomeration and a uniform distribution across the surfaces of MgO. The porous structure, porosity, and pore volume of the MgO particles were evaluated using Brunauer-Emmett-Teller surface analysis. The experimental findings reveal that the surface area of the MgO nanoparticles is 23.8742 m2/g, while the total pore volume is 0.12528 cm3/g. Additionally, the average pore diameter is determined to be 1.7 nm. These observations collectively suggest the presence of microporous structures within the MgO nanoparticles. This article discusses the biological studies to assess the antibacterial, antifungal, anti-inflammatory, and anti-diabetic activities of the synthesised MgO nanoparticles.
Collapse
Affiliation(s)
- Mary Harli Mol Edwin
- Research Scholar, Department of Physics, St. Jude’s College , Thoothor , Tamil Nadu, 629176 , India
- Affiliated to Manonmanium Sundaranar University , Tirunelveli , Tamil Nadu, 627012 , India
| | - Ajin Sundar Sundara Raj
- Department of Physics, St. Jude’s College , Thoothor , Tamil Nadu, 629176 , India
- Affiliated to Manonmanium Sundaranar University , Tirunelveli , Tamil Nadu, 627012 , India
| | - Aravind Mani
- Department of Physics, National Engineering College, K.R. Nagar , Kovilpatti , Tamil Nadu, 628503 , India
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology , Mubarak Al-Abdullah , 32093, Kuwait , Kuwait
- Adnan Kassar School of Business, Lebanese American University , Beirut , Lebanon
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University , Rajpura , 140401, Punjab , India
- Division of Research & Development, Lovely Professional University , Phagwara , 144411, Punjab , India
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
5
|
Jadoun S, Yáñez J, Aepuru R, Sathish M, Jangid NK, Chinnam S. Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19123-19147. [PMID: 38379040 DOI: 10.1007/s11356-024-32357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.
Collapse
Affiliation(s)
- Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica E Inorgánica, Universidad de Concepción, Edmundo Larenas 129, 4070371, Concepción, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000, Talca, Chile
| | | | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology Bengaluru, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
6
|
Villegas-Fuentes A, Rosillo-de la Torre A, Vilchis-Nestor AR, Luque PA. Improvement of the optical, photocatalytic and antibacterial properties of ZnO semiconductor nanoparticles using different pepper aqueous extracts. CHEMOSPHERE 2023; 339:139577. [PMID: 37480957 DOI: 10.1016/j.chemosphere.2023.139577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Peppers are fruits that grow on plants of the genus Capsicum and are popular for their use in gastronomy as a condiment and for their anti-inflammatory and anti-cancer properties due to their phytocompounds such as flavonoids, polyphenols, or alkaloids. Semiconductor zinc oxide (ZnO) nanoparticles (NPs) were synthesized using a green approach employing natural aqueous extracts of several varieties of peppers (jalapeño, morita, and ghost). The obtained NPs were characterized by different techniques, and their photocatalytic and antibacterial activity was studied. The signal at 620 cm-1 in the FTIR spectra belonging to the Zn-O bond, the appearance of the main peaks of a hexagonal wurtzite structure in the XRD pattern, and the characteristic signals in the UV-Vis spectra confirm the correct formation of ZnO NPs. The photocatalytic activity was analyzed against Methylene Blue (MB), Rhodamine B (RB), and Methyl Orange (MO) under UV and sunlight. All syntheses were able to degrade more than 93% of the pollutants under UV light. Antibacterial assays were performed against gram-positive and gram-negative bacteria. All syntheses exhibited antibacterial activity against all bacteria and maximum growth inhibition against Bacillus subtilis. The prominent results demonstrate that natural aqueous extracts obtained from peppers can be used to synthesize ZnO NPs with photocatalytic and biomedical applications.
Collapse
Affiliation(s)
- A Villegas-Fuentes
- Universidad Autónoma de Baja California, Facultad de Ingeniería, Arquitectura y Diseño, C.P. 22860, Ensenada, B.C, Mexico
| | - A Rosillo-de la Torre
- Universidad de Guanajuato, División de Ciencias e Ingeniería, Loma del Bosque #103, Col. Lomas del campestre, C.P. 37150, León, Gto, Mexico
| | - A R Vilchis-Nestor
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Toluca, Mexico
| | - P A Luque
- Universidad Autónoma de Baja California, Facultad de Ingeniería, Arquitectura y Diseño, C.P. 22860, Ensenada, B.C, Mexico.
| |
Collapse
|
7
|
Ravikumar MP, Quach TA, Urupalli B, Murikinati MK, Muthukonda Venkatakrishnan S, Do TO, Mohan S. Observation of inherited plasmonic properties of TiN in titanium oxynitride (TiO xN y) for solar-drive photocatalytic applications. ENVIRONMENTAL RESEARCH 2023; 229:115961. [PMID: 37086885 DOI: 10.1016/j.envres.2023.115961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
This study demonstrates the synthesis of titanium oxynitride (TiOxNy) via a controlled step-annealing of commercial titanium nitride (TiN) powders under normal ambience. The structure of the formed TiOxNy system is confirmed via XRD, Rietveld refinements, XPS, Raman, and HRTEM analysis. A distinct plasmonic band corresponding to TiN is observed in the absorption spectrum of TiOxNy, indicating that the surface plasmonic resonance (SPR) property of TiN is being inherited in the resulting TiOxNy system. The prerequisites such as reduced band gap energy, suitable band edge positions, reduced recombination, and enhanced carrier-lifetime manifested by the TiOxNy system are investigated using Mott-Schottky, XPS, time-resolved and steady-state PL spectroscopy techniques. The obtained TiOxNy photocatalyst is found to degrade around 98% of 10 ppm rhodamine B dye in 120 min and produce H2 at a rate of ∼1546 μmolg-1h-1 under solar light irradiation along with consistent recycle abilities. The results of cyclic voltammetry, linear sweep voltammetry, electrochemical impedance and photocurrent studies suggest that this evolved TiOxNy system could be functioning via plasmonic Ohmic interface rather than the typical plasmonic Schottky interface due to their amalgamated band structures in the oxynitride phase.
Collapse
Affiliation(s)
- Mithun Prakash Ravikumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Toan-Anh Quach
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Bharagav Urupalli
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Mamatha Kumari Murikinati
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Shankar Muthukonda Venkatakrishnan
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
8
|
Bhole R, Gonsalves D, Murugesan G, Narasimhan MK, Srinivasan NR, Dave N, Varadavenkatesan T, Vinayagam R, Govarthanan M, Selvaraj R. Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02532-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|