1
|
Joshi D, Patel H, Suthar S, Patel DH, Kikani BA. Evaluation of the efficiency of thermostable L-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries. World J Microbiol Biotechnol 2024; 40:92. [PMID: 38345704 DOI: 10.1007/s11274-024-03907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
A thermostable L-asparaginase was produced from Bacillus licheniformis UDS-5 (GenBank accession number, OP117154). The production conditions were optimized by the Plackett Burman method, followed by the Box Behnken method, where the enzyme production was enhanced up to fourfold. It secreted L-asparaginase optimally in the medium, pH 7, containing 0.5% (w/v) peptone, 1% (w/v) sodium chloride, 0.15% (w/v) beef extract, 0.15% (w/v) yeast extract, 3% (w/v) L-asparagine at 50 °C for 96 h. The enzyme, with a molecular weight of 85 kDa, was purified by ion exchange chromatography and size exclusion chromatography with better purification fold and percent yield. It displayed optimal catalysis at 70 °C in 20 mM Tris-Cl buffer, pH 8. The purified enzyme also exhibited significant salt tolerance too, making it a suitable candidate for the food application. The L-asparaginase was employed at different doses to evaluate its ability to mitigate acrylamide, while preparing French fries without any prior treatment. The salient attributes of B. licheniformis UDS-5 L-asparaginase, such as greater thermal stability, salt stability and acrylamide reduction in starchy foods, highlights its possible application in the food industry.
Collapse
Affiliation(s)
- Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Darshan H Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
2
|
Khabade S, Sirigiri DNR, Ram AB. l-Asparaginase from Solanum lycopersicum as a Nutraceutical for Acute Lymphoblastic Leukemia. ACS OMEGA 2024; 9:3616-3624. [PMID: 38284052 PMCID: PMC10809669 DOI: 10.1021/acsomega.3c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
l-Asparaginase (E.C. 3.5.1.1) is an indispensable analeptic anticancer enzyme used as an amalgam with additional cancer medicines for the cure of acute lymphoblastic leukemia (ALL). The presence of lAparaginase in tomato was confirmed byWestern blotting and DNA sequencing. The l-Asparaginase gene from tomato has been deposited in the NCBI database with accession number: OR736141. Crude enzyme was extracted from the fruit pulp of Solanum lycopersicum, and the activity was determined by the Nesslerization method. Further, the crude extract was subjected to purification, and kinetic parameters were studied. The percentage yield was calculated to be 6.457, and the purification fold was 0.086. The enzyme showed maximum activity at optimum pH 7.0, optimum temperature 37 °C, and incubation time of 05 min. The Michaelis constant "Km" and maximum velocity "Vmax" values were determined by the Lineweaver-Burk plot, which showed a low Km value of 0.66 and Vmax of 3.846 IU. Cytotoxic studies were carried out for crude and purified l-asparaginase. Purified l-Asparaginase has exhibited anticancer activity against the ALL model system, K-562 cell line, comparable to that of the anticancer compound vinblastine. Hence, l-Asparaginase from the fruit extract of tomato could be used as a nutraceutical to support cancer treatment in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sarina
P. Khabade
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| | - Divijendra Natha Reddy Sirigiri
- Department
of Biotechnology, BMS College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 560019, India
| | - Anshu Beulah Ram
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| |
Collapse
|
3
|
Freitas M, Souza P, Homem-de-Mello M, Fonseca-Bazzo YM, Silveira D, Ferreira Filho EX, Pessoa Junior A, Sarker D, Timson D, Inácio J, Magalhães PO. L-Asparaginase from Penicillium sizovae Produced by a Recombinant Komagataella phaffii Strain. Pharmaceuticals (Basel) 2022; 15:ph15060746. [PMID: 35745665 PMCID: PMC9227789 DOI: 10.3390/ph15060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of L-asparaginase produced by eukaryotic microorganisms with low glutaminase activity. This work aimed to identify the L-asparaginase gene sequence from Penicillium sizovae, a filamentous fungus isolated from the Brazilian Savanna (Cerrado) soil with low glutaminase activity, and to biosynthesize higher yields of this enzyme in the yeast Komagataella phaffii. The L-asparaginase gene sequence of P. sizovae was identified by homology to L-asparaginases from species of Penicillium of the section Citrina: P. citrinum and P. steckii. Partial L-asparaginase from P. sizovae, lacking the periplasmic signaling sequence, was cloned, and expressed intracellularly with highest enzymatic activity achieved by a MUT+ clone cultured in BMM expression medium; a value 5-fold greater than that obtained by native L-asparaginase in P. sizovae cells. To the best of our knowledge, this is the first literature report of the heterologous production of an L-asparaginase from a filamentous fungus by a yeast.
Collapse
Affiliation(s)
- Marcela Freitas
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Paula Souza
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Mauricio Homem-de-Mello
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Yris M. Fonseca-Bazzo
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Damaris Silveira
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | | | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Dipak Sarker
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - David Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - João Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - Pérola O. Magalhães
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
- Correspondence:
| |
Collapse
|
4
|
Barros T, Brumano L, Freitas M, Pessoa A, Parachin N, Magalhães PO. Development of Processes for Recombinant L-Asparaginase II Production by Escherichia coli Bl21 (De3): From Shaker to Bioreactors. Pharmaceutics 2020; 13:E14. [PMID: 33374100 PMCID: PMC7823503 DOI: 10.3390/pharmaceutics13010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Since 1961, L-asparaginase has been used to treat patients with acute lymphocytic leukemia. It rapidly depletes the plasma asparagine and deprives the blood cells of this circulating amino acid, essential for the metabolic cycles of cells. In the search for viable alternatives to produce L-asparaginase, this work aimed to produce this enzyme from Escherichia coli in a shaker and in a 3 L bioreactor. Three culture media were tested: defined, semi-defined and complex medium. L-asparaginase activity was quantified using the β-hydroxamate aspartic acid method. The defined medium provided the highest L-asparaginase activity. In induction studies, two inducers, lactose and its analog IPTG, were compared. Lactose was chosen as an inducer for the experiments conducted in the bioreactor due to its natural source, lower cost and lower toxicity. Batch and fed-batch cultures were carried out to reach high cell density and then start the induction. Batch cultivation provided a final cell concentration of 11 g L-1 and fed-batch cultivation produced 69.90 g L-1 of cells, which produced a volumetric activity of 43,954.79 U L-1 after lactose induction. L-asparaginase was produced in a shaker and scaled up to a bioreactor, increasing 23-fold the cell concentration and thus, the enzyme productivity.
Collapse
Affiliation(s)
- Thaís Barros
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Larissa Brumano
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Marcela Freitas
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Nádia Parachin
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70910-900, Brazil;
| | - Pérola O. Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| |
Collapse
|
5
|
Ameen F, Alshehri WA, Al-Enazi NM, Almansob A. L-Asparaginase activity analysis, ansZ gene identification and anticancer activity of a new Bacillus subtilis isolated from sponges of the Red Sea. Biosci Biotechnol Biochem 2020; 84:2576-2584. [DOI: 10.1080/09168451.2020.1807310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
This study describes the isolation of various marine bacteriafrom sponges collected from the Red Sea (Saudi Arabia) andL-asparaginase (anti-cancer enzyme) production from bacterialisolates. The 16S rDNA based phylogenetic analysis revealed thatthe isolate WSA3 was a Bacillus subtilis. Its partial-length genesequence was submitted to GenBank under the accession numberMK072695. The new B. subtilis strain harbored the exact size(1128 bp) of the new L-asparaginase (ansZ) gene as confirmedby PCR and in gel visualization, which was submitted to the NCBIdatabase (accession number MN566442). The molecular weightof partially purified L-asparaginase was determined as 45 kDa bySDS-PAGE. In addition, the enzyme L-asparaginase did not showglutaminase activity which is very important from a medical pointof view. Moreover, 100 μg/mL of the partially purified B. subtilis Lasparaginaseshowed promising anti-cancer activities when testedagainst three cancer cell lines (HCT-116, MCF-7, and HepG2).
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Abobakr Almansob
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
de Moura WAF, Schultz L, Breyer CA, de Oliveira ALP, Tairum CA, Fernandes GC, Toyama MH, Pessoa-Jr A, Monteiro G, de Oliveira MA. Functional and structural evaluation of the antileukaemic enzyme L-asparaginase II expressed at low temperature by different Escherichia coli strains. Biotechnol Lett 2020; 42:2333-2344. [PMID: 32638188 DOI: 10.1007/s10529-020-02955-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) affects lymphoblastic cells and is the most common neoplasm during childhood. Among the pharmaceuticals used in the treatment protocols for ALL, Asparaginase (ASNase) from Escherichia coli (EcAII) is an essential biodrug. Meanwhile, the use of EcAII in neoplastic treatments causes several side effects, such as immunological reactions, hepatotoxicity, neurotoxicity, depression, and coagulation abnormalities. Commercial EcAII is expressed as a recombinant protein, similar to novel enzymes from different organisms; in fact, EcAII is a tetrameric enzyme with high molecular weight (140 kDa), and its overexpression in recombinant systems often results in bacterial cell death or the production of aggregated or inactive EcAII protein, which is related to the formation of inclusion bodies. On the other hand, several commercial expression strains have been developed to overcome these expression issues, but no studies on a systematic evaluation of the E. coli strains aiming to express recombinant asparaginases have been performed to date. In this study, we evaluated eleven expression strains at a low temperature (16 °C) with different characteristics to determine which is the most appropriate for asparaginase expression; recombinant wild-type EcAII (rEcAII) was used as a prototype enzyme and the secondary structure content, oligomeric state, aggregation and specific activity of the enzymes were assessed. Structural analysis suggested that a correctly folded tetrameric rEcAII was obtained using ArcticExpress (DE3), a strain that co-express chaperonins, while all other strains produced poorly folded proteins. Additionally, the enzymatic assays showed high specific activity of proteins expressed by ArcticExpress (DE3) when compared to the other strains used in this work.
Collapse
Affiliation(s)
- Werner Alfinito Feio de Moura
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Leonardo Schultz
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Carlos Alexandre Breyer
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Ana Laura Pires de Oliveira
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Carlos Abrunhosa Tairum
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Gabriella Costa Fernandes
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Marcos Hikari Toyama
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Adalberto Pessoa-Jr
- Biochemical-Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Gisele Monteiro
- Biochemical-Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Marcos Antonio de Oliveira
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil.
| |
Collapse
|
7
|
Gul A, Hussain G, Iqbal A, Rao AQ, Din SU, Yasmeen A, Shahid N, Ahad A, Latif A, Azam S, Samiullah TR, Hassan S, Shahid AA, Husnain T. Constitutive expression of Asparaginase in Gossypium hirsutum triggers insecticidal activity against Bemisia tabaci. Sci Rep 2020; 10:8958. [PMID: 32488033 PMCID: PMC7265412 DOI: 10.1038/s41598-020-65249-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Whitefly infestation of cotton crop imparts enormous damage to cotton yield by severely affecting plant health, vigour and transmitting Cotton Leaf Curl Virus (CLCuV). Genetic modification of cotton helps to overcome both the direct whitefly infestation as well as CLCuV based cotton yield losses. We have constitutively overexpressed asparaginase (ZmASN) gene in Gossypium hirsutum to overcome the cotton yield losses imparted by whitefly infestation. We achieved 2.54% transformation efficiency in CIM-482 by Agrobacterium-mediated shoot apex transformation method. The relative qRT-PCR revealed 40-fold higher transcripts of asparaginase in transgenic cotton line vs. non-transgenic cotton lines. Metabolic analysis showed higher contents of aspartic acid and glutamic acid in seeds and phloem sap of the transgenic cotton lines. Phenotypically, the transgenic cotton lines showed vigorous growth and height, greater number of bolls, and yield. Among six representative transgenic cotton lines, line 14 had higher photosynthetic rate, stomatal conductance, smooth fiber surface, increased fiber convolutions (SEM analysis) and 95% whitefly mortality as compared to non-transgenic cotton line. The gene integration analysis by fluorescence in situ hybridization showed single copy gene integration at chromosome number 1. Collectively, asparaginase gene demonstrated potential to control whitefly infestation, post-infestation damages and improve cotton plant health and yield: a pre-requisite for farmer's community.
Collapse
Affiliation(s)
- Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
- Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ghulam Hussain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Adnan Iqbal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Salah Ud Din
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ammara Ahad
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Tahir Rehman Samiullah
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Samina Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
- Kinnaird College for Women University, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| |
Collapse
|
8
|
Chand S, Mahajan RV, Prasad JP, Sahoo DK, Mihooliya KN, Dhar MS, Sharma G. A comprehensive review on microbial l-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnol Appl Biochem 2020; 67:619-647. [PMID: 31954377 DOI: 10.1002/bab.1888] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
l-Asparaginase (E.C.3.5.1.1.) is a vital enzyme that hydrolyzes l-asparagine to l-aspartic acid and ammonia. This property of l-asparaginase inhibits the protein synthesis in cancer cells, making l-asparaginase a mainstay of pediatric chemotherapy practices to treat acute lymphoblastic leukemia (ALL) patients. l-Asparaginase is also recognized as one of the important food processing agent. The removal of asparagine by l-asparaginase leads to the reduction of acrylamide formation in fried food items. l-Asparaginase is produced by various organisms including animals, plants, and microorganisms, however, only microorganisms that produce a substantial amount of this enzyme are of commercial significance. The commercial l-asparaginase for healthcare applications is chiefly derived from Escherichia coli and Erwinia chrysanthemi. A high rate of hypersensitivity and adverse reactions limits the long-term clinical use of l-asparaginase. Present review provides thorough information on microbial l-asparaginase bioprocess optimization including submerged fermentation and solid-state fermentation for l-asparaginase production, downstream purification, its characterization, and issues related to the clinical application including toxicity and hypersensitivity. Here, we have highlighted the bioprocess techniques that can produce improved and economically viable yields of l-asparaginase from promising microbial sources in the current scenario where there is an urgent need for alternate l-asparaginase with less adverse effects.
Collapse
Affiliation(s)
- Subhash Chand
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Richi V Mahajan
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India
| | - Jai Prakash Prasad
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India
| | - Debendra K Sahoo
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Kanti Nandan Mihooliya
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Mahesh S Dhar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Girish Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.,Amity Centre for Cancer Epidemiology & Cancer Research, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
In silico analysis of codon usage and rare codon clusters in the halophilic bacteria L-asparaginase. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-019-00324-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation. Appl Microbiol Biotechnol 2019; 103:5739-5750. [DOI: 10.1007/s00253-019-09928-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
|
11
|
Shakambari G, Sameer Kumar R, Ashokkumar B, Ganesh V, Vasantha VS, Varalakshmi P. Cloning and expression of L-asparaginase from Bacillus tequilensis PV9W and therapeutic efficacy of Solid Lipid Particle formulations against cancer. Sci Rep 2018; 8:18013. [PMID: 30573733 PMCID: PMC6301963 DOI: 10.1038/s41598-018-36161-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 11/12/2022] Open
Abstract
L-asparaginase, a therapeutic involved in cancer therapy, from Bacillus tequilensis PV9W (ansA gene) was cloned and over expressed in Escherichia coli BL21 (DE3), achieved the aim of maximizing the yield of the recombinant enzyme (6.02 ± 1.77 IU/mL) within 12 h. The native L-asparaginase of B. tequilensis PV9W was encapsulated using solid lipid particles by hot lipid emulsion method, which is reported for first time in this study. Subsequently, the lipid encapsulated L-asparaginase (LPE) was characterized by SEM, UV-Vis spectroscopy, FT-IR, SDS-PAGE and its thermo stability was also analyzed by TGA. Further characterization of LPE revealed that enzyme was highly stable for 25 days when stored at 25 °C, showed high pH (9) tolerance and longer trypsin half-life (120 min). In addition, the cytotoxic ability of LPE on HeLa cells was highly enhanced compared to the native L-asparaginase from Bacillus tequilensis PV9W. Moreover, better kinetic velocity and lower Km values of LPE aided to detect L-asparagine in cell extracts by Differential Pulse Voltammetry (DPV) method. The LPE preparation also showed least immunogenic reaction when tested on normal macrophage cell lines. This LPE preparation might thus pave way for efficient drug delivery and enhancing the stability of L-asparaginase for its therapeutic applications.
Collapse
Affiliation(s)
- Ganeshan Shakambari
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Rai Sameer Kumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Venkatachalam Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute, (CSIR - CECRI), Karaikudi, Tamilnadu, 630003, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
12
|
Kante RK, Vemula S, Mallu MR, Ronda SR. Efficient and easily scalable protein folding strong anion exchange chromatography for renaturation and simultaneous purification of recombinant human asparaginase from E. coli. Biotechnol Prog 2018; 34:1036-1044. [PMID: 29708643 DOI: 10.1002/btpr.2649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/23/2018] [Indexed: 11/05/2022]
Abstract
Recombinant proteins are revolutionizing present day therapeutics. They are generally expressed as insoluble inclusion bodies in the E. coli and mis-folding, loss of protein, and high cost of down streaming are the hurdles in their recovery. For the first time, we are reporting the refolding with simultaneous purification of rhASP in E. coli using a single step utilizing protein folding-strong anion exchange chromatography (PF-SAX). The purification method is also standardized for optimal concentration of solution additives, pH, and mobile phase composition. The results showed purification of rhASP with anion exchange chromatography was effective. Phosphate buffer and slightly alkaline pH produced significant recovery yields and purity profiles. The effect of solution additives such as arginine, glycerol, TMAO, sorbitol, dextran, glutamate, and fructose on rhASP renaturation is also investigated. Significant results were achieved using arginine-TMAO combination in terms of purity, recovery yield and specific activity of 99%, 78%, and 210 IU/mg, respectively. The work concludes that PF-SAX refolding method is superior to other conventional methods and it can be applied to large scale purification of rhASP produced in E. coli. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1036-1044, 2018.
Collapse
Affiliation(s)
- Rajesh Kumar Kante
- Dept. of Biotechnology, K L E F University, Centre for Bioprocess Technology, Guntur, Andhra Pradesh, 522 502, India
| | - Sandeep Vemula
- Dept. of Biotechnology, K L E F University, Centre for Bioprocess Technology, Guntur, Andhra Pradesh, 522 502, India
| | - Maheswara Reddy Mallu
- Dept. of Biotechnology, K L E F University, Centre for Bioprocess Technology, Guntur, Andhra Pradesh, 522 502, India
| | - Srinivasa Reddy Ronda
- Dept. of Biotechnology, K L E F University, Centre for Bioprocess Technology, Guntur, Andhra Pradesh, 522 502, India
| |
Collapse
|
13
|
Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. BIORESOURCE TECHNOLOGY 2017; 245:1775-1781. [PMID: 28596071 DOI: 10.1016/j.biortech.2017.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
L-asparaginase is one of the protein drugs for countering leukemia and lymphoma. A major challenge in the therapeutic potential of the enzyme is its immunogenicity, low-plasma half-life and glutaminase activity that are found to be the reasons for toxicities attributed to asparaginase therapy. For addressing these challenges, several research and developmental activities are going on throughout the world for an effective drug delivery for treatment of cancer. Hence there is an urgent need for the development of asparaginase with improved properties for efficient drug delivery. The strategies selected should be economically viable to ensure the availability of the drug at low cost. The current review addresses various strategies adopted for the production of asparaginase from different sources, approaches for increasing the therapeutic efficiency of the protein and new drug delivery systems for L-asparaginase.
Collapse
Affiliation(s)
- Jalaja Vidya
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| | - Syed Sajitha
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Mrudula Vasudevan Ushasree
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|
14
|
Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol 2017; 101:7227-7238. [DOI: 10.1007/s00253-017-8456-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
15
|
Kebeish R, El-Sayed A, Fahmy H, Abdel-Ghany A. Molecular Cloning, Biochemical Characterization, and Antitumor Properties of a Novel L-Asparaginase from Synechococcus elongatus PCC6803. BIOCHEMISTRY (MOSCOW) 2017; 81:1173-1181. [PMID: 27908241 DOI: 10.1134/s000629791610014x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-asparaginase (EC 3.5.1.1), which catalyzes the deamidation of L-asparagine to L-aspartic acid and ammonia, has been widely used as a key therapeutic tool in the treatment of tumors. The current commercially available L-asparaginases, produced from bacteria, have signs of toxicity and hypersensitivity reactions during the course of tumor therapy. Therefore, searching for L-asparaginases with unique biochemical properties and fewer adverse effects was the objective of this work. In this study, cyanobacterial strain Synechococcus elongatus PCC6803 was found as a novel source of L-asparaginase. The L-asparaginase gene coding sequence (gi:939195038) was cloned and expressed in E. coli BL21(DE3), and the recombinant protein (Se.ASPII) was purified by affinity chromatography. The enzyme has high affinity towards L-asparagine and shows very weak affinity towards L-glutamine. The enzymatic properties of the recombinant enzyme were investigated, and the kinetic parameters (Km, Vmax) were measured. The pH and temperature dependence profiles of the novel enzyme were analyzed. The work was extended to measure the antitumor properties of the novel enzyme against different human tumor cell lines.
Collapse
Affiliation(s)
- R Kebeish
- Zagazig University, Faculty of Science, Botany and Microbiology Department, Zagazig-Sharkia, 44519, Egypt.
| | | | | | | |
Collapse
|
16
|
Rahimzadeh M, Poodat M, Javadpour S, Qeshmi FI, Shamsipour F. Purification, Characterization and Comparison between Two New L-asparaginases from Bacillus PG03 and Bacillus PG04. Open Biochem J 2016; 10:35-45. [PMID: 27999622 PMCID: PMC5144114 DOI: 10.2174/1874091x01610010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND L-asparaginase has been used as a chemotherapeutic agent in treatment of lymphoblastic leukemia. In the present investigation, Bacillus sp. PG03 and Bacillus sp. PG04 were studied. METHODS L- asparaginases were produced using different culture media and were purified using ion exchange chromatography. RESULTS Maximum productivity was obtained when asparagine was used as the nitrogen source at pH 7 and 48 h after cultivation. New intracellular L-asparaginases showed an apparent molecular weight of 25 kDa and 30 kDa by SDS-PAGE respectively. These enzymes were active in a wide pH range (3-9) with maximum activity at pH 6 for Bacillus PG03 and pH 7 for Bacillus PG04 L-asparaginase. Bacillus PG03 enzyme was optimally active at 37 ˚C and Bacillus PG04 maximum activity was observed at 40˚C. Kinetic parameters km and Vmax of both enzymes were studied using L-asparagine as the substrate. Thermal inactivation studies of Bacillus PG03 and Bacillus PG04 L-asparaginase exhibited t1/2 of 69.3 min and 34.6 min in 37 ˚C respectively. Also T50 and ∆G of inactivation were measured for both enzymes. CONCLUSION The results revealed that both enzymes had appropriate characteristics and thus could be a potential candidate for medical applications.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- Molecular Medicine Research Center, Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Food and Cosmetic Health Research Center, Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Manijeh Poodat
- Department of Biochemistry, Faculty of Sciences, Payame Noor University of Mashhad, Mashhad, Iran
| | - Sedigheh Javadpour
- Molecular Medicine Research Center, Department of Microbiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Izadpanah Qeshmi
- Food and Cosmetic Health Research Center, Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Shamsipour
- Monoclonal Antibody Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran
| |
Collapse
|
17
|
Meena B, Anburajan L, Vinithkumar NV, Shridhar D, Raghavan RV, Dharani G, Kirubagaran R. Molecular expression of l -asparaginase gene from Nocardiopsis alba NIOT-VKMA08 in Escherichia coli : A prospective recombinant enzyme for leukaemia chemotherapy. Gene 2016; 590:220-6. [DOI: 10.1016/j.gene.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
18
|
Ali U, Naveed M, Ullah A, Ali K, Shah SA, Fahad S, Mumtaz AS. L-asparaginase as a critical component to combat Acute Lymphoblastic Leukaemia (ALL): A novel approach to target ALL. Eur J Pharmacol 2015; 771:199-210. [PMID: 26698391 DOI: 10.1016/j.ejphar.2015.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 02/02/2023]
Abstract
L-asparaginase, an anti-leukaemic drug that has been approved for clinical use for many years in the treatment of childhood Acute Lymphoblastic Leukaemia (ALL), is obtained from bacterial origin (Escherichia coli and Erwinia carotovora). The efficacy of L-asparaginase has been discussed for the past 40 years, and an ideal substitute for the enzyme has not yet been developed. The early clearance from plasma (short half-life) and requirement for multiple administrations and hence frequent physician visits make the overall treatment cost quite high. In addition, a high rate of allergic reactions in patients receiving treatment with the enzyme isolated from bacterial sources make its clinical application challenging. For these reasons, various attempts are being made to overcome these barriers. Therefore, the present article reviews studies focused on seeking substitutes for L-asparaginase through alternative sources including bacteria, fungi, actinomycetes, algae and plants to overcome these limitations. In addition, the role of chemical modifications and protein engineering approaches to enhance the drug's efficacy are also discussed. Moreover, an overview has also been provided in the current review regarding the contradiction among various researchers regarding the significance of the enzyme's glutaminase activity.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Naveed
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Khadija Ali
- Department of Environmental Sciences, International Islamic University, Islamabad, Pakistan
| | - Sayed Afzal Shah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
19
|
Cloning, expression and characterization of L-asparaginase from Pseudomonas fluorescens for large scale production in E. coli BL21. 3 Biotech 2015; 5:975-981. [PMID: 28324403 PMCID: PMC4624130 DOI: 10.1007/s13205-015-0300-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/26/2015] [Indexed: 11/16/2022] Open
Abstract
l-Asparaginase (E.C. 3.5.1.1) is used as an anti-neoplastic drug in the treatment of acute lymphoblastic leukemia. l-Asparaginase from Pseudomonas fluorescens was cloned and overexpressed in E. coli BL21. The Enzyme was found to be a Fusion protein-asparaginase complex which was given a lysozyme treatment and sonication, and then was purified in a Sepharose 6B column. The enzymatic properties of the recombinant enzyme were studied and the kinetic parameters were determined with kilometre of 109.99 mM and Vmax of 2.88 µM/min. Recombinant enzyme showed pH optima at 6.3 and temperature optima at 34 °C. Asp gene was successfully cloned into E. coli BL21 which produced high level of asparaginase intracellularly with 85.25 % recovery of enzyme with a specific activity of 0.94 IU/mg protein. The enzyme was a tetramer with molecular weight of approximately 141 kDa.
Collapse
|
20
|
Upadhyay AK, Singh A, Mukherjee KJ, Panda AK. Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. Front Microbiol 2014; 5:486. [PMID: 25309524 PMCID: PMC4164012 DOI: 10.3389/fmicb.2014.00486] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022] Open
Abstract
A tetrameric protein of therapeutic importance, Escherichia coli L-asparaginase-II was expressed in Escherichia coli as inclusion bodies (IBs). Asparaginase IBs were solubilized using low concentration of urea and refolded into active tetrameric protein using pulsatile dilution method. Refolded asparaginase was purified in two steps by ion-exchange and gel filtration chromatographic techniques. The recovery of bioactive asparaginase from IBs was around 50%. The melting temperature (Tm) of the purified asparaginase was found to be 64°C. The specific activity of refolded, purified asparaginase was found to be comparable to the commercial asparaginase (190 IU/mg). Enzymatic activity of the refolded asparaginase was high even at four molar urea solutions, where the IB aggregates are completely solubilized. From the comparison of chemical denaturation data and activity at different concentrations of guanidine hydrochloride, it was observed that dissociation of monomeric units precedes the complete loss of helical secondary structures. Protection of the existing native-like protein structure during solubilization of IB aggregates with 4 M urea improved the propensity of monomer units to form oligomeric structure. Our mild solubilization technique retaining native-like structures, improved recovery of asparaginase in bioactive tetrameric form.
Collapse
Affiliation(s)
- Arun K Upadhyay
- Product Development Cell, National Institute of Immunology New Delhi, India
| | - Anupam Singh
- Product Development Cell, National Institute of Immunology New Delhi, India
| | - K J Mukherjee
- School for Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology New Delhi, India
| |
Collapse
|
21
|
Andrade AF, Borges KS, Silveira VS. Update on the Use of l-Asparaginase in Infants and Adolescent Patients with Acute Lymphoblastic Leukemia. Clin Med Insights Oncol 2014; 8:95-100. [PMID: 25210485 PMCID: PMC4149393 DOI: 10.4137/cmo.s10242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/24/2023] Open
Abstract
Great improvements have been made in acute lymphoblastic leukemia (ALL) treatment in the past decades, especially due to the use of l-asparaginase (l-ASP). Despite the significant success rate, several side effects mainly caused by toxicity, asparaginase silent inactivation, and cellular resistance, encourage an open debate regarding the optimal dosage and formulation of l-ASP. Alternative sources of asparaginases have been constantly investigated in order to overcome hypersensitivity clinical toxicity. Additionally, genomic modulation as gene expression profiling, genetic polymorphisms, and epigenetic changes is also being investigated concerning their role in cellular resistance to l-ASP. Understanding the mechanisms that mediate the resistance to l-ASP treatment may bring new insights into ALL pathobiology and contribute to the development of more effective treatment strategies. In summary, this review presents an overview on l-ASP data and focuses on cellular mechanisms underlying resistance and alternative therapies for the use of asparaginase in childhood ALL treatment.
Collapse
Affiliation(s)
- Augusto F Andrade
- Department of Genetics, Ribeirão Preto Medical School/University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Kleiton S Borges
- Department of Pediatrics, Ribeirão Preto Medical School/University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Vanessa S Silveira
- Department of Genetics, Ribeirão Preto Medical School/University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
22
|
Pourhossein M, Korbekandi H. Cloning, expression, purification and characterisation of Erwinia carotovora L-asparaginase in Escherichia coli. Adv Biomed Res 2014; 3:82. [PMID: 24761390 PMCID: PMC3988593 DOI: 10.4103/2277-9175.127995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 11/12/2013] [Indexed: 12/04/2022] Open
Abstract
Background: For the past 30 years, bacterial L-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer side-effects in leukemia therapy. Our aim was to clone, express, purify and characterize E. carotovora asparaginase. Materials and Methods: L-asparaginase from E. carotovora NCYC 1526 (ErA) was cloned and expressed in Escherichia coli strain BL21 (DE3). The enzyme was purified to homogeneity by affinity chromatography. Various conditions were tested to maximize the production of recombinant asparaginase in E. coli. Results: A new L. asparaginase from E. carotovora NCYC 1526 (ErA) was successfully cloned, expressed and purified in E. coli BL21 (DE3). The specific activity of the enzyme was 430 IU/mg. Conclusion: The results of the present work form the basis for a new engineered form of ErA for future therapeutic use, which could be extended with crystallographic studies.
Collapse
Affiliation(s)
- Meraj Pourhossein
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Korbekandi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Andrade AF, Borges KS, Silveira VS. Update on the Use of l-Asparaginase in Infants and Adolescent Patients with Acute Lymphoblastic Leukemia. Clin Med Insights Oncol 2014. [PMID: 25210485 DOI: 10.4137/cmo.s1024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Great improvements have been made in acute lymphoblastic leukemia (ALL) treatment in the past decades, especially due to the use of l-asparaginase (l-ASP). Despite the significant success rate, several side effects mainly caused by toxicity, asparaginase silent inactivation, and cellular resistance, encourage an open debate regarding the optimal dosage and formulation of l-ASP. Alternative sources of asparaginases have been constantly investigated in order to overcome hypersensitivity clinical toxicity. Additionally, genomic modulation as gene expression profiling, genetic polymorphisms, and epigenetic changes is also being investigated concerning their role in cellular resistance to l-ASP. Understanding the mechanisms that mediate the resistance to l-ASP treatment may bring new insights into ALL pathobiology and contribute to the development of more effective treatment strategies. In summary, this review presents an overview on l-ASP data and focuses on cellular mechanisms underlying resistance and alternative therapies for the use of asparaginase in childhood ALL treatment.
Collapse
Affiliation(s)
- Augusto F Andrade
- Department of Genetics, Ribeirão Preto Medical School/University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Kleiton S Borges
- Department of Pediatrics, Ribeirão Preto Medical School/University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Vanessa S Silveira
- Department of Genetics, Ribeirão Preto Medical School/University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
24
|
Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol 2013; 80:1561-9. [PMID: 24362429 DOI: 10.1128/aem.03523-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel fungal gene encoding the Rhizomucor miehei l-asparaginase (RmAsnase) was cloned and expressed in Escherichia coli. Its deduced amino acid sequence shared only 57% identity with the amino acid sequences of other reported l-asparaginases. The purified l-asparaginase homodimer had a molecular mass of 133.7 kDa, a high specific activity of 1,985 U/mg, and very low glutaminase activity. RmAsnase was optimally active at pH 7.0 and 45°C and was stable at this temperature for 30 min. The final level of acrylamide in biscuits and bread was decreased by about 81.6% and 94.2%, respectively, upon treatment with 10 U RmAsnase per mg flour. Moreover, this l-asparaginase was found to potentiate a lectin's induction of leukemic K562 cell apoptosis, allowing lowering of the drug dosage and shortening of the incubation time. Overall, our findings suggest that RmAsnase possesses a remarkable potential for the food industry and in chemotherapeutics for leukemia.
Collapse
|
25
|
Jia M, Xu M, He B, Rao Z. Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11-06. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9428-9434. [PMID: 24003863 DOI: 10.1021/jf402636w] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study focused on the cloning, overexpression, and characterization of the gene encoding L-asparaginase (ansZ) from a nonpathogenic strain of Bacillus subtilis B11-06. The recombinant enzyme showed high thermostability and low affinity to L-glutamine. The ansZ gene, encoding a putative L-asparaginase II, was amplified by PCR and expressed in B. subtilis 168 using the shuttle vector pMA5. The activity of the recombinant enzyme was 9.98 U/mL, which was significantly higher than that of B. subtilis B11-06. The recombinant enzyme was purified by a two-step procedure including ammonium sulfate fractionation and hydrophobic interaction chromatography. The optimum pH and temperature of the recombinant enzyme were 7.5 and 40 °C, respectively. The enzyme was quite stable at a pH range of 6.0-9.0 and exhibited about 14.7 and 9.0% retention of activity following 2 h incubation at 50 or 60 °C, respectively. The Km for L-asparagine was 0.43 mM, and the Vmax was 77.51 μM/min. Results of this study also revealed the potential industrial application of this enzyme in reducing acrylamide formation during the potato frying process.
Collapse
Affiliation(s)
- Mingmei Jia
- The Key Laboratory of Industrial Biotechnology, Ministry of Educationand Lab of Applied Microbiology and Metabolic Engineering, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | | | | | | |
Collapse
|