1
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
2
|
Putra IGEP, Ulfah M, Nurhayati N, Helianti I. Coproduction of alkaline protease and xylanase from genetically modified Indonesian local Bacillus halodurans CM1 using corncob as an inducing substrate. Saudi J Biol Sci 2024; 31:103947. [PMID: 38371876 PMCID: PMC10873748 DOI: 10.1016/j.sjbs.2024.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
The production of corn generates a substantial amount of agro-industrial waste, with corncob accounting for a significant portion of this waste. In this study, we focused on utilizing corncob as a carbon source and inducer to simultaneously produce two valuable industrial enzymes, protease, and xylanase, using a recombinant strain of B. halodurans CM1. Interestingly, xylan-rich corncob not only enhanced the xylanase activity but also induced protease activity of the modified B. halodurans CM1 strain. The effect of corncob concentration on the coproduction of protease and xylanase was investigated. Corncob with 6 % concentration induced protease activity of 1020.7 U/mL and xylanase activity of 502.8 U/mL in a 7 L bioreactor under the condition of 1 vvm aeration, 250 rpm agitation, 37 °C temperature, initial pH 9.0, and 40 h incubation period. The protease produced was an alkalothermophilic enzyme whose highest activity was at pH 12 and 50 °C, and it belonged to a serine protease family. This alkalothermophilic protease's activity to some degree was reduced by Co2+, Mg2+, Fe2+, Zn2+, and K+, but enhanced by Ca2+ and Ni2+ (at 5 mM). The protease was stable even under the presence of a 15 % concentration of acetone, DMSO, ethanol, and isopropyl alcohol. The protease activity at 30 °C was not considerably changed by the presence of detergent, indicating excellent potential as a washing detergent additive. According to these findings, corncob has the potential to be a substrate for the coproduction of protease and xylanase, which have a wide range of industrial uses.
Collapse
Affiliation(s)
- I Gede Eka Perdana Putra
- Research Center for Applied Microbiology, National Research and Innovation Agency, Republic of Indonesia (BRIN). Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, Jawa Barat 16911, Indonesia
| | - Maria Ulfah
- Research Center for Genetic Engineering, National Research and Innovation Agency, Republic of Indonesia (BRIN). Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, Jawa Barat 16911, Indonesia
| | - Niknik Nurhayati
- Research Center for Genetic Engineering, National Research and Innovation Agency, Republic of Indonesia (BRIN). Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, Jawa Barat 16911, Indonesia
| | - Is Helianti
- Research Center for Genetic Engineering, National Research and Innovation Agency, Republic of Indonesia (BRIN). Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, Jawa Barat 16911, Indonesia
| |
Collapse
|
3
|
Aftab M, Ejaz U, Pashameah RA, Fatima A, Syed J, Ansari I, Sohail M, AlSubhi SA, Alzahrani E, El-Bahy ZM. Utilization of Corncob as an Immobilization Matrix for a Xylanolytic Yeast Strain. Polymers (Basel) 2023; 15:683. [PMID: 36771985 PMCID: PMC9920909 DOI: 10.3390/polym15030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Immobilization of microbial cells for the production of industrially important enzymes has been reported to offer the advantages of recyclability, higher yields and cost effectiveness. The search for an appropriate matrix that is affordable and easy to prepare is a significant topic in microbial biotechnology. Here, an abundant type of agro-industrial waste-corncob-was utilized as an immobilization matrix for the production of xylanase from an indigenous yeast strain, Saccharomyces cerevisiae MK-157. This is the first report describing xylanase production from immobilized S. cerevisiae. To render the corncob matrix more porous, alkaline pretreatment was undertaken and yeast cells were immobilized on the matrix by cultivating at 30 °C for 48 h in Sabouraud dextrose broth. After incubation, the immobilized matrix was transferred to mineral salt medium containing 1% xylan and incubated at 30 °C for 24 h. Xylanase production was determined in cell-free culture supernatant and the matrix was recycled for up to seven cycles. Moreover, xylanase-mediated saccharification was carried out using sugarcane bagasse as a substrate and the release of reducing sugars was monitored. The results showed that the immobilized yeast produced 4.97 IU mL-1 xylanase in the first production cycle, indicating a >tenfold increase compared to the free cells. Xylanase production further increased to its maximum levels (9.23 IU mL-1) in the fourth production cycle. Nonetheless, the cells retained 100% productivity for up to seven cycles. The volumetric and specific productivity of xylanase were also the highest in the fourth cycle. Scanning electron microscopy images revealed the rough surface of the untreated corncob, which became more porous after alkaline pretreatment. Immobilized yeast cells were also visible on the corncob pieces. The saccharification of a natural resource-sugarcane bagasse-using xylanase preparation yielded 26 mg L-1 of reducing sugars. Therefore, it can be concluded that yeast strains can yield sufficient quantities of xylanase, allowing possible biotechnological applications. Moreover, corncob can serve as a cost-effective matrix for industrially important yeast strains.
Collapse
Affiliation(s)
- Maham Aftab
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Aimen Fatima
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Jaweria Syed
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Immad Ansari
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Samah A. AlSubhi
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
4
|
Hazafa A, Jahan N, Zia MA, Rahman KU, Sagheer M, Naeem M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. CHEMOSPHERE 2022; 292:133411. [PMID: 34958785 DOI: 10.1016/j.chemosphere.2021.133411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The rapidly emerging field of nanotechnology is considered an important achievement in the agriculture sector to increase the pest mortality rate and improve the crop production. The present study evaluates the novel pesticidal and anti-microbial activities of Chrysanthemum coronarium and Azadirachta indica in the nano-suspensions form. The anti-solvent precipitation method was used to formulate nano-suspensions proposed by Response Surface Methodology (RSM). Physicochemical nature of plant extracts and nano-suspensions was characterized through analysis of Zeta-sizer, FT-IR, and HPLC. Characterization results revealed a minimum particle size of 121.1 and 170.1 nm for Chrysanthemum coronarium and Azadirachta indica, respectively. The pesticidal activity of nano-suspension was performed against red flour beetle (RFB) and lesser grain borer (LGB) pests, which showed the maximum mortality rate of 100% with 100% concentration of plant extracts and nano-suspensions of Chrysanthemum coronarium and Azadirachta indica against both insects. In comparison, the combination of these both plant extracts revealed the maximum 100% mortality with a 50% concentration of nano-suspensions (mixing ratio 1:1) after 72 h. The antibacterial activity showed the maximum zone inhibition of 9.96 ± 0.17 and 14.17 ± 0.50 mm against S.aureus and E. coli with nano-suspension of Chrysanthemum coronarium, and 12.09 ± 0.11 and 14.10 ± 0.49 mm with nano-suspension of Azadirachta indica, respectively. It is concluded that individual nano-suspensions showed better pesticidal as well as antimicrobial activities than combinations. However, the constructed nanosuspension can be applied to control the plant pests and diseases simultaneously.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Khalil-Ur Rahman
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sagheer
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
5
|
Rath S, Paul M, Behera HK, Thatoi H. Response surface methodology mediated optimization of Lignin peroxidase from Bacillus mycoides isolated from Simlipal Biosphere Reserve, Odisha, India. J Genet Eng Biotechnol 2022; 20:2. [PMID: 34978643 PMCID: PMC8724326 DOI: 10.1186/s43141-021-00284-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lignin is a complex polymer of phenyl propanoid units found in the vascular tissues of the plants as one of lignocellulose materials. Many bacteria secrete enzymes to lyse lignin, which can be essential to ease the production of bioethanol. Current research focused on the study of ligninolytic bacteria capable of producing lignin peroxidase (LiP) which can help in lignin biodegradation and bioethanol production. Ligninolytic bacterial strains were isolated and screened from the soil samples of Simlipal Biosphere Reserve (SBR), Odisha (India), for the determination of their LiP activity. Enzymatic assay and optimization for the LiP activity were performed with the most potent bacterial strain. The strain was identified by morphological, biochemical, and molecular methods. RESULTS In this study, a total of 16 bacteria (Simlipal ligninolytic bacteria [SLB] 1-16) were isolated from forest soils of SBR using minimal salt medium containing lignin. Out of the 16 isolates, 9 isolates showed decolourization of methylene blue dye on LB agar plates. The bacterial isolates such as SLB8, SLB9, and SLB10 were able to decolourize lignin with 15.51%, 16.80%, and 33.02%, respectively. Further enzyme assay was performed using H2O2 as substrate and methylene blue as an indicator for these three bacterial strains in lignin containing minimal salt medium where the isolate SLB10 showed the highest LiP activity (31.711 U/mg). The most potent strain, SLB10, was optimized for enhanced LiP enzyme activity using response surface methodology. In the optimized condition of pH 10.5, temperature 30 °C, H2O2 concentration 0.115 mM, and time 42 h, SLB10 showed a maximum LiP activity of 55.947 U/mg with an increase of 1.76 times from un-optimized condition. Further chemical optimization was performed, and maximum LiP activity as well as significant dye-decolourization efficiency of SLB10 has been found in bacterial growth medium supplemented individually with cellulose, yeast extract, and MnSO4. Most notably, yeast extract and MnSO4-supplemented bacterial culture medium were shown to have even higher percentage of dye decolourization compared to normal basal medium. The bacterial strain SLB10 was identified as Bacillus mycoides according to morphological, biochemical, and molecular (16S rRNA sequencing) characterization and phylogenetic tree analysis. CONCLUSION Result from the present study revealed the potential of Bacillus mycoides bacterium isolated from the forest soil of SBR in producing LiP enzyme that can be evaluated further for application in lignin biodegradation and bioethanol production. Scaling up of LiP production from this potent bacterial strain could be useful in different industrial applications.
Collapse
Affiliation(s)
- Subhashree Rath
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India
| | - Hemanta Kumar Behera
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India.
| |
Collapse
|
6
|
Optimisation of xylanases production by two Cellulomonas strains and their use for biomass deconstruction. Appl Microbiol Biotechnol 2021; 105:4577-4588. [PMID: 34019113 PMCID: PMC8195749 DOI: 10.1007/s00253-021-11305-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 11/12/2022]
Abstract
Abstract One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp. B6 and Cellulomonas fimi B-402 for their subsequent application in lignocellulosic biomass hydrolysis by culture in several substrates. As demonstrated by secretomic profiling, wheat bran and waste paper resulted to be suitable inducers for the secretion of xylanases of Cellulomonas sp. B6 and C. fimi B-402, respectively. Both strains showed high xylanolytic activity in culture supernatant although Cellulomonas sp. B6 was the most efficient xylanolytic strain. Upscaling from flasks to fermentation in a bench scale bioreactor resulted in equivalent production of extracellular xylanolytic enzymatic extracts and freeze drying was a successful method for concentration and conservation of the extracellular enzymes, retaining 80% activity. Moreover, enzymatic cocktails composed of combined extra and intracellular extracts effectively hydrolysed the hemicellulose fraction of extruded barley straw into xylose and xylooligosaccharides. Key points • Secreted xylanase activity of Cellulomonas sp. B6 and C. fimi was maximised. • Biomass-induced extracellular enzymes were identified by proteomic profiling. • Combinations of extra and intracellular extracts were used for barley straw hydrolysis. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11305-y.
Collapse
|
7
|
Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal Biosphere Reserve, Odisha, using response surface methodology. J Genet Eng Biotechnol 2020; 18:81. [PMID: 33306167 PMCID: PMC7732945 DOI: 10.1186/s43141-020-00099-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
Background Xylanase has long been recognized as a widely used industrially important enzyme. There are some bacterial species already reported to produce xylanase which have potent xylanolytic activity towards the use of this enzyme in the production of bioethanol from lignocellulosic biomass. In this view, an efficient xylanolytic bacterial strain was isolated and screened from the soil sample of Simlipal Biosphere Reserve. Enzymatic assay for the xylanase activity was evidenced from the most potent bacterial strain, and the culture condition was optimized for obtaining the maximum enzyme activity. The most potent xylanolytic strain was also identified using biochemical and molecular methods. Results Nineteen xylanolytic bacteria (SXB1-SXB19) were isolated from Simlipal forest soil samples following dilution plate technique using corn cob xylan-enriched nutrient agar medium and screened for their xylanase-producing ability. Among these isolates, SXB19 showed maximum xylanolytic potential with a halozone size of 2.5 cm as evident in the formation of prominent yellow patches surrounding its growth in xylan-enriched nutrient agar plate. In unoptimized condition, SXB19 showed the highest enzymatic activity of 22.5 IU/ml among the 19 bacterial strains. In order to optimize the culture conditions for maximizing the xylanase production, Box-Behnken design of response surface methodology (RSM) was used. Four variables such as incubation time, pH, substrate (corn cob xylan) concentration, and temperature were considered for the RSM optimization study. From the results, it is evident that in an optimized condition of incubation time 36 h, pH 6.0, xylan concentration 0.5%, and temperature 42.5 °C, the enzyme activity reached a maximum of 152 IU/ml with nearly 6.75 times increase from the unoptimised condition. Besides, xylanase production from SXB19 was considerable in the presence of xylan followed by starch, nitrogen source such as urea followed by yeast extract, and mineral ion sources such as KCl followed by MgSO4 and ZnSO4. From different biochemical tests, 16S rRNA gene sequencing, and phylogenetic analysis, the bacterial strain SXB19 was identified as Pseudomonas mohnii. Conclusion The isolation of Pseudomonas mohnii, a potent xylanolytic bacterium from Simlipal, is a new report which opens up an opportunity for industrial production of xylanase for bioethanol production and other applications. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s43141-020-00099-7.
Collapse
|
8
|
Dahiya S, Kumar A, Singh B. Enhanced endoxylanase production by Myceliophthora thermophila using rice straw and its synergism with phytase in improving nutrition. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Abdella A, Segato F, Wilkins MR. Optimization of nutrient medium components for production of a client endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus using a recombinant Aspergillus nidulans strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering (Basel) 2018; 5:E89. [PMID: 30347746 PMCID: PMC6316313 DOI: 10.3390/bioengineering5040089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem, statistical models such as Design of Experiments (DoE) have been used to optimise recombinant protein production. This review examines the application of DoE in the production of recombinant proteins in prokaryotic expression systems with specific emphasis on media composition and culture conditions. The review examines the most commonly used DoE screening and optimisation designs. It provides examples of DoE applied to optimisation of media and culture conditions.
Collapse
Affiliation(s)
| | | | - Gary T Henehan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| | - Barry J Ryan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| |
Collapse
|
11
|
Hubka V, Nováková A, Jurjević Ž, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. Int J Syst Evol Microbiol 2018; 68:995-1011. [PMID: 29458472 DOI: 10.1099/ijsem.0.002583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspergillus candidus is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using A. candidus and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among A. candidus isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The A. candidus sensu lato isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in A. candidus sensu lato. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, Aspergillus dobrogensis, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651T=NRRL 62821T=IBT 32697T=CBS 143370T) and its differentiation from A. candidus is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section Candidi members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section Candidi.
Collapse
Affiliation(s)
- Vit Hubka
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alena Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - František Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - João P Z Siqueira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratório de Microbiologia, Faculdade de Medicina de SãoJosé do Rio Preto, São José do Rio Preto, Brazil
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Miroslav Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Kumar V, Chhabra D, Shukla P. Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification. BIORESOURCE TECHNOLOGY 2017; 243:1009-1019. [PMID: 28764103 DOI: 10.1016/j.biortech.2017.07.094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The xylanase production from Thermomyces lanuginosus VAPS-24 has been optimized using OFAT (One factor at a time) approach using agro-industrial substrates. Further, central composite design (CCD) has been employed to optimize various process parameters such as temperature (45-55°C), carbon source concentration (1.5-2.5%), fermentation time (72-120h) and production medium pH (6-8). Maximum xylanase yield after RSM optimization was approximately double (119.91±2.53UmL-1) than un-optimized conditions (61.09±0.91UmL-1). Several hybrid statistical tools such as Genetic Algorithm-Response Surface Methodology (GA-RSM), Artificial Neural Network (ANN), Genetic Algorithm-Artificial Neural Network (GA-ANN) were employed to obtain more optimized process parameters to maximize the xylanase production and observed an increase of 10.50% xylanase production (132.51±3.27UmL-1) as compared to RSM response (119.91±2.53UmL-1). The various pretreated and untreated agricultural residues were subjected to saccharification by using crude xylanase in which the pretreated rice straw yielded maximum fermentable sugars 126.89mgg-1.
Collapse
Affiliation(s)
- Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Deepak Chhabra
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
13
|
Ramanjaneyulu G, Sridevi A, Seshapani P, Ramya A, Dileep Kumar K, Praveen Kumar Reddy G, Rajasekhar Reddy B. Enhanced production of xylanase by Fusarium sp. BVKT R2 and evaluation of its biomass saccharification efficiency. 3 Biotech 2017; 7:351. [PMID: 28955648 PMCID: PMC5614900 DOI: 10.1007/s13205-017-0977-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022] Open
Abstract
Growth of Fusarium sp. BVKT R2, a potential isolate of forest soils of Eastern Ghats on birchwood xylan in mineral salts medium (MSM) under un-optimized conditions of 30 °C, pH of 5.0, 150 rpm and inoculum size of 5 agar plugs for 7 days, yielded titer of 1290 U/mL of xylanase (EC 3.2.1.8). The effect of various operating parameters such as different substrates and their concentration, additional carbon and nitrogen sources, incubation temperature, initial pH, agitation and inoculum size on the production of xylanase by Fusarium sp. BVKT R2 was studied in shake flask culture by one factor at a time approach. The same culture exhibited higher production of xylanase (4200 U/mL) when grown on birch wood xylan in MSM under optimized conditions with an additional carbon source-sorbitol (1.5%) nitrogen source-yeast extract (1.5%) temperature of 30 °C, pH of 5.0, agitation of 200 rpm and inoculum of 6 agar plugs for only 5 days. There was enhancement in xylanase production under optimized conditions by 3.2 folds over yields under un-optimized conditions. Growth of BVKT R2 culture on locally available lignocelluloses-sawdust, rice straw and cotton stalk-in MSM for 5 days released soluble sugars to the maximum extent of 52.76% with respect to sawdust indicating its greater importance in saccharification essential for biotechnological applications.
Collapse
Affiliation(s)
- G. Ramanjaneyulu
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - A. Sridevi
- Department of Applied Microbiology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh India
| | - P. Seshapani
- Department of Microbiology, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - A. Ramya
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - K. Dileep Kumar
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - G. Praveen Kumar Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| | - B. Rajasekhar Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh 515003 India
| |
Collapse
|
14
|
Ramanjaneyulu G, Rajasekhar Reddy B. Optimization of Xylanase Production through Response Surface Methodology by Fusarium sp. BVKT R2 Isolated from Forest Soil and Its Application in Saccharification. Front Microbiol 2016; 7:1450. [PMID: 27713726 PMCID: PMC5032753 DOI: 10.3389/fmicb.2016.01450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Xylanses are hydrolytic enzymes with wide applications in several industries like biofuels, paper and pulp, deinking, food, and feed. The present study was aimed at hitting at high yield xylanase producing fungi from natural resources. Two highest xylanase producing fungal isolates-Q12 and L1 were picked from collection of 450 fungal cultures for the utilization of xylan. These fungal isolates-Q12 and L1 were identified basing on ITS gene sequencing analysis as Fusarium sp. BVKT R2 (KT119615) and Fusarium strain BRR R6 (KT119619), respectively with construction of phylogenetic trees. Fusarium sp. BVKT R2 was further optimized for maximum xylanase production and the interaction effects between variables on production of xylanase were studied through response surface methodology. The optimal conditions for maximal production of xylanase were sorbitol 1.5%, yeast extract 1.5%, pH of 5.0, Temperature of 32.5°C, and agitation of 175 rpm. Under optimal conditions, the yields of xylanase production by Fusarium sp. BVKT R2 was as high as 4560 U/ml in SmF. Incubation of different lignocellulosic biomasses with crude enzyme of Fusarium sp. BVKT R2 at 37°C for 72 h could achieve about 45% saccharification. The results suggest that Fusarium sp. BVKT R2 has potential applications in saccharification process of biomass.
Collapse
Affiliation(s)
- Golla Ramanjaneyulu
- Department of Microbiology, Sri Krishnadevaraya UniversityAnantapuramu, India
| | | |
Collapse
|
15
|
Tarayre C, Bauwens J, Brasseur C, Mattéotti C, Millet C, Guiot PA, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4369-4382. [PMID: 25300185 DOI: 10.1007/s11356-014-3681-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this work was the isolation and cultivation of cellulolytic and xylanolytic microorganisms extracted from the gut of the lower termite Reticulitermes santonensis. Microcrystalline cellulose (with and without lignin) and beech wood xylan were used as diets instead of poplar wood in order to select cellulose and hemicellulose-degrading fungi. The strain Sarocladium kiliense (Acremonium kiliense) CTGxxyl was isolated from the termites fed on xylan, while the strain Trichoderma virens CTGxAviL was isolated from the termites fed on cellulose (with and without lignin). Both molds were cultivated in liquid media containing different substrates: agro-residues or purified polymers. S. kiliense produced maximal β-glucosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and endo-1,4-β-D-xylanase activities of 0.103, 3.99, 0.53, and 40.8 IU/ml, respectively. T. virens produced maximal β-xylosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase, and endo-1,4-β-D-xylanase activities of 0.38, 1.48, 0.69, and 426 IU/ml. The cellulase and the xylanase of S. kiliense, less common than T. virens, were further investigated. The optimal activity of the xylanase was observed at pH 9-10 at 60 °C. The cellulase showed its maximal activity at pH 10, 70 °C. Zymography identified different xylanases produced by both molds, and some fragment sizes were highlighted: 35, 100, and 170 kDa for S. kiliense and 20, 40, 80, and 170 kDa for T. virens. In both cases, endo-1,4-β-D-xylanase activities were confirmed through mass spectrometry.
Collapse
Affiliation(s)
- Cédric Tarayre
- Unit of Bio-Industries, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sarve A, Varma MN, Sonawane SS. Optimization and Kinetic Studies on Biodiesel Production from Kusum ( Schleichera triguga) Oil Using Response Surface Methodology. J Oleo Sci 2015; 64:987-97. [DOI: 10.5650/jos.ess15069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Antaram Sarve
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT)
| | - Mahesh N. Varma
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT)
| | - Shriram S. Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT)
| |
Collapse
|
17
|
Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, Bala M, Rehman R, Varma A, Kumar V, Kumar M. Characterization of Actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. SPRINGERPLUS 2014; 3:622. [PMID: 25392792 PMCID: PMC4218925 DOI: 10.1186/2193-1801-3-622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/14/2014] [Indexed: 11/10/2022]
Abstract
Laboratory bench scaling was done and an average of 1.85 fold increase by Response Surface Methodology (RSM) optimization was obtained. It was found that the predicted value (4.96 IU/ml) obtained by RSM is in close accordance with observed activity 5.14 IU/ml. Endoglucanases are mainly induced by CMC while Wheat bran (natural substrate) exoglucanase is more active when induced by avicel and cellulose. Addition of substrate beyond a level caused inhibition of cellulase production. The molecular weight of protein as determined by SDS-PAGE is very similar to molecular weight of cellulase of Trichoderma viride (T. viride) cellulase and Trichoderma reesei (T. reesei) endoglucanase. T. reesei β-glucosidase has high enzymatic activity on CMC substrate when compared with T. viride β-glucosidase. Secondary structure analysed by using Circular Dichroism confirmed that composition of celluase system is very similar to other analysed species. The cellulase was found to be active in pH range of 4.8-5.5; while temperature range varied from 50°C to 70°C. Although the enzymatic activity produced by mutants were lesser than the parent, but in one case mutants of Trichoderma reesei's BGL has shown higher activity on cellulose.
Collapse
Affiliation(s)
- Tanveer Pirzadah
- />Department of Bioresources, University of Kashmir, Srinagar, 190006 Jammu & Kashmir India
| | - Shashank Garg
- />Department of Microbiology, School of Biotechnology and Biosciences Lovely Professional University, Punjab, India
| | - Joginder Singh
- />Department of Microbiology, School of Biotechnology and Biosciences Lovely Professional University, Punjab, India
| | - Ashish Vyas
- />Department of Microbiology, School of Biotechnology and Biosciences Lovely Professional University, Punjab, India
| | - Manish Kumar
- />AIRF, Jawaharlal Nehru University, New Delhi 67, India
| | - Naseem Gaur
- />International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 67, India
| | - Madhu Bala
- />Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi 54, India
| | - Reiaz Rehman
- />Department of Bioresources, University of Kashmir, Srinagar, 190006 Jammu & Kashmir India
| | - Ajit Varma
- />Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Vivek Kumar
- />Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Manoj Kumar
- />Department of Bioresources, University of Kashmir, Srinagar, 190006 Jammu & Kashmir India
- />Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201303 India
| |
Collapse
|