1
|
He Y, Zhang H, Huwati Y, Shu N, Hu W, Jia X, Ding K, Liang X, Liu L, Han L, Xiao W. On-site cellulase production by Trichoderma reesei RutC-30 to enhance the enzymatic saccharification of ball-milled corn stover. Enzyme Microb Technol 2024; 181:110530. [PMID: 39442493 DOI: 10.1016/j.enzmictec.2024.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cellulases are essential for the enzymatic saccharification of lignocellulose. They play a crucial role in breaking down the structure of lignocellulose to obtain fermentable sugars. In this study, we conducted on-site cellulase production by Trichoderma reesei RutC-30 through submerged fermentation. The effects of carbon source, nitrogen source, KH2PO4, and mineral elements on cellulase production were evaluated using the hydrolyzed total sugar concentration of ball-milled corn stover as an indicator. The optimal fermentation medium conditions for cellulase production were determined through orthogonal experimental design analysis. Additionally, by optimizing culture conditions, including inoculation, pH, and bottling volume, we achieved a total sugar concentration of 92.25 g/L. After the optimization, the FPA, CMCA, protein, and total sugar concentration increased by 75.49 %, 18.43 %, 89.71 %, and 17.83 %, respectively. Furthermore, corn stover pretreated by different methods was applied to induce cellulase production. Ball-milled and steam-exploded corn stover was identified as suitable incubation carbon sources with total sugar concentration up to 94.31 g/L. Our work exploits the cellulase induced by lignocellulose and then applies it to lignocellulose, enabling the customization and providing a reference for the production of cellulase with corn stover as an inducer.
Collapse
Affiliation(s)
- Yinghui He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Hui Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Yeledana Huwati
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Na Shu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Wei Hu
- China Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiwen Jia
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Kaili Ding
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Xueyan Liang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Luoyang Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Weihua Xiao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Castro-Ochoa LD, Hernández-Leyva SR, Medina-Godoy S, Gómez-Rodríguez J, Aguilar-Uscanga MG, Castro-Martínez C. Integration of agricultural residues as biomass source to saccharification bioprocess and for the production of cellulases from filamentous fungi. 3 Biotech 2023; 13:43. [PMID: 36643402 PMCID: PMC9834466 DOI: 10.1007/s13205-022-03444-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2023] Open
Abstract
The production of second-generation bioethanol has several challenges, among them finding cheap and efficient enzymes for a sustainable process. In this work, we analyzed two native fungi, Cladosporium cladosporioides and Penicillium funiculosum, as a source of cellulolytic enzyme production, and corn stover, wheat bran, chickpeas, and bean straw as a carbon source in two fermentation systems: submerged and solid fermentation. Corn stover was selected for cellulase production in both fermentation systems, because we found the highest enzymatic activities when carboxymethyl cellulase activity (CMCase) was assessed using CMC as substrate. C. cladosporioides showed the highest CMCase activity (1.6 U/mL), while P. funiculosum had the highest filter paper activity (Fpase) (0.39 U/mL). The ß-glucosidase activities produced by both fungi were similar in submerged fermentation using corn stover as substrate. Through in-gel zymography, three polypeptides with cellulolytic activities were identified in each fungus: with molecular weights of ~ 38, 45 and 70 kDa in C. cladosporioides and ~ 21, 63 and 100 kDa in P. funiculosum. The best results for saccharification (10.11 g/L of reducing sugars) of diluted acid pretreated corn stover were obtained after 36 h of the hydrolytic process at pH 5 and 50 °C using the enzyme extract of P. funiculosum. This is the first report of cellulase identification in C. cladosporioides and the saccharification of corn stover using enzymes of this fungus. Enzymatic extracts of C. cladosporioides and P. funiculosum obtained from low-cost lignocellulosic biomass have great potential for use in the production of second-generation bioethanol.
Collapse
Affiliation(s)
- Lelie Denise Castro-Ochoa
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| | - Sandy Rocío Hernández-Leyva
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| | - Sergio Medina-Godoy
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| | - Javier Gómez-Rodríguez
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos (UNIDA), H. Veracruz, México
| | - María Guadalupe Aguilar-Uscanga
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos (UNIDA), H. Veracruz, México
| | - Claudia Castro-Martínez
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| |
Collapse
|
3
|
Zhang X, Hu Y, Liu G, Liu M, Li Z, Zhao J, Song X, Zhong Y, Qu Y, Wang L, Qin Y. The complex Tup1-Cyc8 bridges transcription factor ClrB and putative histone methyltransferase LaeA to activate the expression of cellulolytic genes. Mol Microbiol 2022; 117:1002-1022. [PMID: 35072962 DOI: 10.1111/mmi.14885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Xiujun Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yueyan Hu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhonghai Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Defining the Frontiers of Synergism between Cellulolytic Enzymes for Improved Hydrolysis of Lignocellulosic Feedstocks. Catalysts 2021. [DOI: 10.3390/catal11111343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.
Collapse
|
5
|
Oni OD, Oke MA, Sani A. Mixing of Prosopis africana pods and corn cob exerts contrasting effects on the production and quality of Bacillus thuringiensis crude endoglucanase. Prep Biochem Biotechnol 2020; 50:735-744. [PMID: 32129150 DOI: 10.1080/10826068.2020.1734939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, attention has shifted to the use of mixed lignocellulosic substrates for the production of cellulolytic enzymes. However, researchers have focused mainly on achieving increased enzyme yields while neglecting other properties of the enzymes when using such mixtures. In this first-ever report of the application of Prosopis africana pod (PAP) in cellulase production, we investigated the effect of its combination with corn cob (CC), as an inducing carbon source, on the amounts and quality of crude endoglucanase produced by Bacillus thuringiensis SS12. The organism was grown on PAP, CC or their 1:1% w/w mixture (MS) and the crude endoglucanases produced were tested for activity, hydrolytic efficiency, and thermostability. PAP supported the highest enzyme activity (0.138 U/mL) and its endoglucanase was the most effective in hydrolyzing CMC and filter paper while CC-derived endoglucanase was the best for hydrolysis of alkali-pretreated CC. Enzyme activity of MS-derived endoglucanase (0.110 U/mL) was intermediate to that of PAP and CC (0.091 U/mL) and was the most stable at elevated temperatures (70 and 80 °C). It also liberated the least amount of reducing sugars from all tested substrates. Combination of both the substrates, thus, favored enzyme production and thermostability but was detrimental to hydrolytic efficiency.
Collapse
Affiliation(s)
- Oyewole Daniel Oni
- Faculty of Life Sciences, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Mushafau Adebayo Oke
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, School of Applied Sciences and Technology, Northern Alberta Institute of Technology, Edmonton, Canada
| | - Alhassan Sani
- Faculty of Life Sciences, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
6
|
Chen S, Sun S, Zhong C, Wang T, Zhang Y, Zhou J. Bioconversion of lignocellulose and simultaneous production of cellulase, ligninase and bioflocculants by Alcaligenes faecalis-X3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|