1
|
Sun X, Gao F, Fan C, Yang S, Zhao T, Tu T, Luo H, Yao B, Huang H, Su X. Sub-genomic RNAi-assisted strain evolution of filamentous fungi for enhanced protein production. Appl Environ Microbiol 2024; 90:e0208223. [PMID: 38899886 PMCID: PMC11267940 DOI: 10.1128/aem.02082-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.
Collapse
Affiliation(s)
- Xianhua Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Fan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shuyan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Fan C, Zhang W, Su X, Ji W, Luo H, Zhang Y, Liu B, Yao B, Huang H, Xu X. CRISPR/Cas9-mediated genome editing directed by a 5S rRNA-tRNA Gly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:206. [PMID: 34688310 PMCID: PMC8542335 DOI: 10.1186/s13068-021-02057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humicola insolens is a filamentous fungus with high potential of producing neutral and heat- and alkali-resistant cellulase. However, the genetic engineering tools, particularly the genome-editing tool, are scarce, hindering the study of cellulase expression regulation in this organism. RESULTS Herein, a CRISPR/Cas9 genome-editing system was established in H. insolens based on a hybrid 5S rRNA-tRNAGly promoter. This system is superior to the HDV (hepatitis delta virus) system in genome editing, allowing highly efficient single gene destruction in H. insolens with rates of deletion up to 84.1% (37/44). With this system, a putative pigment synthesis gene pks and the transcription factor xyr1 gene were disrupted with high efficiency. Moreover, the extracellular protein concentration and cellulase activity largely decreased when xyr1 was deleted, demonstrating for the first time that Xyr1 plays an important role in cellulase expression regulation. CONCLUSIONS The established CRISPR/Cas9 system is a powerful genetic operation tool for H. insolens, which will accelerate studies on the regulation mechanism of cellulase expression and engineering of H. insolens for higher cellulase production.
Collapse
Affiliation(s)
- Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Xiaoyun Su
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Huoqing Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China.
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021; 13:3365. [PMID: 34641185 PMCID: PMC8512337 DOI: 10.3390/polym13193365] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Collapse
Affiliation(s)
- Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. R. M. Huzaifah
- Faculty of Agricultural Science and Forestry, Bintulu Campus, Universiti Putra Malaysia, Bintulu 97000, Sarawak, Malaysia
| | - Nani Harihastuti
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - M. M. Harussani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
| | - M. N. M. Azlin
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Textile Technology, School of Industrial Technology, Universiti Teknologi MARA, Universiti Teknologi Mara Negeri Sembilan, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Rustiana Yuliasni
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - R. Ibrahim
- Innovation & Commercialization Division, Forest Research Institute Malaysia, Kepong 52109, Selangor Darul Ehsan, Malaysia;
| | - M. S. N. Atikah
- Department of Chemical and Environmental Engineering Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Junying Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - K. Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea;
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| |
Collapse
|
4
|
Xu X, Fan C, Song L, Li J, Chen Y, Zhang Y, Liu B, Zhang W. A Novel CreA-Mediated Regulation Mechanism of Cellulase Expression in the Thermophilic Fungus Humicola insolens. Int J Mol Sci 2019; 20:ijms20153693. [PMID: 31357701 PMCID: PMC6696435 DOI: 10.3390/ijms20153693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
The thermophilic fungus Humicola insolens produces cellulolytic enzymes that are of great scientific and commercial interest; however, few reports have focused on its cellulase expression regulation mechanism. In this study, we constructed a creA gene (carbon catabolite repressor gene) disruption mutant strain of H. insolens that exhibited a reduced radial growth rate and stouter hyphae compared to the wild-type (WT) strain. The creA disruption mutant also expressed elevated pNPCase (cellobiohydrolase activities), pNPGase (β-glucosidase activities), and xylanase levels in non-inducing fermentation with glucose. Unlike other fungi, the H. insolenscreA disruption mutant displayed lower FPase (filter paper activity), CMCase (carboxymethyl cellulose activity), pNPCase, and pNPGase activity than observed in the WT strain when fermentation was induced using Avicel, whereas its xylanase activity was higher than that of the parental strain. These results indicate that CreA acts as a crucial regulator of hyphal growth and is part of a unique cellulase expression regulation mechanism in H. insolens. These findings provide a new perspective to improve the understanding of carbon catabolite repression regulation mechanisms in cellulase expression, and enrich the knowledge of metabolism diversity and molecular regulation of carbon metabolism in thermophilic fungi.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Liya Song
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jinyang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Yuan Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| |
Collapse
|