1
|
Kyawt YY, Aung M, Xu Y, Zhou Y, Li Y, Sun Z, Zhu W, Cheng Y. Methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane by natural anaerobic fungi-methanogens co-culture. World J Microbiol Biotechnol 2024; 40:109. [PMID: 38411737 DOI: 10.1007/s11274-024-03938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Biomass from agriculture, forestry, and urban wastes is a potential renewable organic resource for energy generation. Many investigations have demonstrated that anaerobic fungi and methanogens could be co-cultured to degrade lignocellulose for methane generation. Thus, this study aimed to evaluate the effect of natural anaerobic fungi-methanogens co-culture on the methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane. Hu sheep rumen digesta was used to develop a natural anaerobic fungi-methanogen co-culture. The substrates were rice straw (RS), rich husk (RH), corn stover (CS), corn cobs (CC), and sugarcane baggage (SB). Production of total gas and methane, metabolization rate of reducing sugar, glucose, and xylose, digestibility of hemicellulose and cellulose, activity of carboxymethylcellulase and xylanase, and concentrations of total acid and acetate were highest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) in SB and RH. The pH, lactate and ethanol were lowest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) SB and RH. Formate was lowest (P < 0.05) in CC, RS and CS, moderate (P < 0.05) in SB, and lowest (P < 0.05) in RH. Therefore, this study indicated that the potential of methane production and lignocellulosic degradation by natural anaerobic fungi-methanogens co-culture were highest in CC, moderate in RS and CS, and lowest in SB and RH.
Collapse
Affiliation(s)
- Yin Yin Kyawt
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw, 15013, Myanmar
| | - Min Aung
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw, 15013, Myanmar
| | - Yao Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Zhou
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Vasiliauskienė D, Pranskevičius M, Dauknys R, Urbonavičius J, Lukša J, Burko V, Zagorskis A. Changes in Microbiota Composition during the Anaerobic Digestion of Macroalgae in a Three-Stage Bioreactor. Microorganisms 2024; 12:109. [PMID: 38257937 PMCID: PMC10821162 DOI: 10.3390/microorganisms12010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of microalgae as a raw material for biogas production is promising. Macroalgae were mixed with cattle manure, wheat straw, and an inoculant from sewage sludge. Mixing macroalgae with co-substrates increased biogas and methane yield. The research was carried out using a three-stage bioreactor. During biogas production, the dynamics of the composition of the microbiota in the anaerobic chamber of the bioreactor was evaluated. The microbiota composition at different organic load rates (OLRs) of the bioreactor was evaluated. This study also demonstrated that in a three-stage bioreactor, a higher yield of methane in biogas was obtained compared to a single-stage bioreactor. It was found that the most active functional pathway of methane biosynthesis is PWY-6969, which proceeds via the TCA cycle V (2-oxoglutarate synthase). Microbiota composition and methane yield depended on added volatile solids (VSadded). During the research, it was found that after reducing the ORL from 2.44 to 1.09 kg VS/d, the methane yield increased from 175.2 L CH4/kg VSadded to 323.5 L CH4/kg VSadded.
Collapse
Affiliation(s)
- Dovilė Vasiliauskienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, 10223 Vilnius, Lithuania; (D.V.); (J.U.); (J.L.)
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Mantas Pranskevičius
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Regimantas Dauknys
- Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, 10223 Vilnius, Lithuania; (D.V.); (J.U.); (J.L.)
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Juliana Lukša
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, 10223 Vilnius, Lithuania; (D.V.); (J.U.); (J.L.)
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania
| | - Vadym Burko
- Department of Primary Science Institute of Modern Technologies, Pryazovskyi State Technical University, 87555 Mariupol, Ukraine;
| | - Alvydas Zagorskis
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
- Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
3
|
Srivastava M, Bansal SL, Khan MS, Tripathi SC, Singh R, Rai AK. Rice Straw Waste-Based Biogas Production via Microbial Digestion: A Review. Mol Biotechnol 2023:10.1007/s12033-023-00904-x. [PMID: 37882940 DOI: 10.1007/s12033-023-00904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
The development of sustainable and renewable energy production is in high demand, and bioenergy production via microbial digestion of organic wastes is in prime focus. Biogas produced from the microbial digestion of organic waste is the most promising among existing biofuel options. In this context, biogas production from lignocellulosic biomass is one of the most viable and promising technologies for sustainable biofuel production. In the present review, an assessment and feasibility advancement have been presented towards the sustainable production of biogas from rice straw waste. Rice straw (RS) is abundantly available, contains a high composition of cellulose, and is found under the category of lignocellulosic waste, but it may cause severe environmental issues if not treated. Whereas, due to its high cellulose and inorganic content, lower cost, and huge availability, this waste can be effectively valorized into biogas production at a lower cost on a commercial scale. Therefore, the present review provides existing insight in this area by focusing on the operational parameter's improvement and advancement in the research for the expansion of mass-scale production at a lower cost. Thus, the presented review analyzed the processing parameters status, associated challenges, and positive endnote solutions for more sustainable viability for biogas production.
Collapse
Affiliation(s)
- Manish Srivastava
- LCB Fertilizers Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh, 273015, India.
| | - Swarn Lata Bansal
- Department of Chemistry, Lucknow University, Lucknow, UP, 226007, India
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, Saudi Arabia
| | - Subhash C Tripathi
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Obi LU, Roopnarain A, Tekere M, Adeleke RA. Bioaugmentation potential of inoculum derived from anaerobic digestion feedstock for enhanced methane production using water hyacinth. World J Microbiol Biotechnol 2023; 39:153. [PMID: 37032393 PMCID: PMC10083160 DOI: 10.1007/s11274-023-03600-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/02/2023] [Indexed: 04/11/2023]
Abstract
The utilisation of water hyacinth for production of biogas is considered to be a solution to both its control and the global renewable energy challenge. In this instance, an investigation was conducted to evaluate the potential of water hyacinth inoculum to enhance methane production during anaerobic digestion (AD). Chopped whole water hyacinth (10% (w/v)) was digested to prepare an inoculum consisting mainly of water hyacinth indigenous microbes. The inoculum was incorporated in the AD of freshly chopped whole water hyacinth to set up different ratios of water hyacinth inoculum and water hyacinth mixture with appropriate controls. The results of batch tests with water hyacinth inoculum showed a maximal cumulative volume of 211.67 ml of methane after 29 days of AD as opposed to 88.6 ml of methane generated from the control treatment without inoculum. In addition to improving methane production, inclusion of water hyacinth inoculum reduced the electrical conductivity (EC) values of the resultant digestate, and, amplification of nifH and phoD genes in the digestate accentuates it as a potential soil ameliorant. This study provides an insight into the potential of water hyacinth inoculum to enhance methane production and contribute to the feasibility of the digestate as a soil fertility enhancer.
Collapse
Affiliation(s)
- Linda U Obi
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa.
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria, 0083, South Africa.
- Department of Biological Sciences, Godfrey Okoye University, Jideofor St, Thinkers Corner, Enugu, 400001, Enugu State, Nigeria.
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria, 0083, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Rasheed A Adeleke
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria, 0083, South Africa
- Unit for Environment Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
5
|
Mohanakrishna G, Modestra JA. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128386. [PMID: 36423757 DOI: 10.1016/j.biortech.2022.128386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Bioenergy production is the most sought-after topics at the crunch of energy demand, climate change and waste generation. In view of this, lignocellulosic biomass (LCB) rich in complex organic content has the potential to produce bioenergy in several forms following the pretreatment. Hydrothermal pretreatment that employs high temperatures and pressures is gaining momentum for organics recovery from LCB which can attain value-addition. Diverse bioprocesses such as dark fermentation, anaerobic digestion etc. can be utilized following the pretreatment of LCB which can result in biohydrogen and biomethane production. Besides, integration approaches for LCB utilization that enhance process efficiency and additional products such as biohythane production as well as application of solid residue obtained after LCB pretreatment were discussed. Importance of hydrothermal pretreatment as one of the suitable strategies for LCB utilization is emphasized suggesting its future potential in large scale energy recovery.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
6
|
Serna-Loaiza S, Kornpointner C, Pazzaglia A, Jordan C, Halbwirth H, Friedl A. Biorefinery concept for the valorization of grapevine shoots: Study case for the Austrian variety Grüner Veltliner. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Yadav K, Vasistha S, Nawkarkar P, Kumar S, Rai MP. Algal biorefinery culminating multiple value-added products: recent advances, emerging trends, opportunities, and challenges. 3 Biotech 2022; 12:244. [PMID: 36033914 PMCID: PMC9402873 DOI: 10.1007/s13205-022-03288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
Algal biorefinery is rising as a prominent solution to economically fulfill the escalating global requirement for nutrition, feed, fuel, and medicines. In recent years, scientific productiveness associated with microalgae-based studies has elaborated in multiplied aspects, while translation to the commercial level continues to be missing. The present microalgal biorefinery has a challenge in long-term viability due to escalated market price of algal-mediated biofuels and bioproducts. Advancements are required in a few aspects like improvement in algae processing, energy investment, and cost analysis of microalgae biorefinery. Therefore, it is essential to recognize the modern work by understanding the knowledge gaps and hotspots driving business scale up. The microalgae biorefinery integrated with energy-based products, bioactive and green compounds, focusing on a circular bioeconomy, is urgently needed. A detailed investigation of techno-economic analysis (TEA) and life cycle assessment (LCA) is important to increase the market value of algal products. This review discusses the valorization of algal biomass for the value-added application that holds a sustainable approach and cost-competitive algal biorefinery. The current industries, policies, technology transfer trends, challenges, and future economic outlook are discussed. This study is an overview through scientometric investigation attempt to describe the research development contributing to this rising field.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Shrasti Vasistha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Prachi Nawkarkar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Monika Prakash Rai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
8
|
Olatunji KO, Madyira DM, Ahmed NA, Jekayinfa SO, Ogunkunle O. Modelling the effects of particle size pretreatment method on biogas yield of groundnut shells. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1176-1188. [PMID: 35075967 DOI: 10.1177/0734242x211073852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optimising biogas yields from anaerobic digestion of organic wastes is significant to maximum energy recovery in the biodigestion process and has become an important topic of interest. Substrate particle size is an important process parameter in biogas production, and it precedes other pretreatments methods for the majority of the lignocellulose materials. Optimisation of biogas yield using Response Surface Methodology (RSM) was done, and temperature, hydraulic retention time and particle size were considered variables to develop the predictive models. Pretreatment of groundnut shells was investigated using particle size reduction of mechanical pretreatment methods. After pretreatment, 30 samples were digested in a batch digester at mesophilic temperature. The experimental results showed that the temperature, hydraulic retention time and particle size had significant effects of interaction (p < 0.05). The optimum experimental and predicted yields are: 44.70 and 42.92 (lNkgoDM) organic dry matter biogas yield, 20.80 and 19.09 (lN/kgFM) fresh mass biogas yield, 24.00 and 22.68 (lNCH4oDM) organic dry methane yield and 12.30 and 15.59 (lNCH4FM) fresh mass methane yield, respectively. The R2 recorded for the four yield components were 0.6268, 0.5875, 0.6109 and 0.5547. These values seem to be lower and a sign of the average fit of the model. Biogas production from groundnut shells was significantly improved with statistical optimisation and the pretreatment method.
Collapse
Affiliation(s)
- Kehinde Oladoke Olatunji
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Daniel M Madyira
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Noor A Ahmed
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Simeon O Jekayinfa
- Department of Agricultural Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oyetola Ogunkunle
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
9
|
Estimating the Methane Potential of Energy Crops: An Overview on Types of Data Sources and Their Limitations. Processes (Basel) 2021. [DOI: 10.3390/pr9091565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As the anaerobic digestion of energy crops and crop residues becomes more widely applied for bioenergy production, planners and operators of biogas plants, and farmers who consider growing such crops, have a need for information on potential biogas and methane yields. A rich body of literature reports methane yields for a variety of such materials. These data have been obtained with different testing methods. This work elaborates an overview on the types of data source available and the methods that are commonly applied to determine the methane yield of an agricultural biomass, with a focus on European crops. Limitations regarding the transferability and generalisation of data are explored, and crop methane values presented across the literature are compared. Large variations were found for reported values, which can only partially be explained by the methods applied. Most notably, the intra-crop variation of methane yield (reported values for a single crop type) was higher than the inter-crop variation (variation between different crops). The pronounced differences in reported methane yields indicate that relying on results from individual assays of candidate materials is a high-risk approach for planning biogas operations, and the ranges of values such as those presented here are essential to provide a robust basis for estimation.
Collapse
|
10
|
Wijeyekoon SLJ, Vaidya AA. Woody biomass as a potential feedstock for fermentative gaseous biofuel production. World J Microbiol Biotechnol 2021; 37:134. [PMID: 34258684 DOI: 10.1007/s11274-021-03102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023]
Abstract
Biogas and biohydrogen are compatible gaseous biofuels that can be blended with natural gas for reticulated fuel supply to reduce greenhouse gas emissions. Sustainably grown woody biomass is emerging as a potential feedstock in the production of biofuels. Woody biomass is widely available, uses non-arable land for plantation, does not require synthetic fertilisers to grow and acts as a carbon sink. The cellulose and hemicellulose fractions of wood are renewable sources of sugars that can be used for fermentative production of gaseous biofuels. However, widespread use of wood as a gaseous biofuel feedstock is constrained due to the recalcitrant nature of wood to enzymatic hydrolysis. Pretreatment makes cellulose and hemicellulose accessible to microbial enzymes to produce fermentable sugars. Here we review wood composition, its structure and different pretreatment techniques in the context of their effects on deconstruction of wood to improve hydrolysis and fermentative gaseous fuel production. The anaerobic digestion of pretreated wood for biogas and dark fermentation for biohydrogen production are discussed with reference to gas yields. Key advancements in lab-scale research are described for pretreatments and for pure, co- and mixed culture fermentations. Limitations to yield improvements are identified and future perspectives and prospects of gaseous biofuel production from woody biomass are discussed, with reference to new developments in engineered biocatalysts and process integration.
Collapse
Affiliation(s)
| | - Alankar A Vaidya
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand.
| |
Collapse
|
11
|
Mothe S, Polisetty VR. Review on anaerobic digestion of rice straw for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24455-24469. [PMID: 32335832 DOI: 10.1007/s11356-020-08762-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
India is an agrarian country producing a large amount of rice straw as an agricultural residue. These residues are burnt openly leading to severe environmental pollution and health hazards. Among several options available, anaerobic digestion of rice straw into biomethane gas and digestate is a promising technology. The current paper reviews the characteristics, principles of rice straw and the process variables (temperature, volatile fatty acids, and pH, carbon to nitrogen ratio, metal elements and organic loading rate) that affect the performance of the rice straw digestion and process strategies which may alleviate the barriers and may improve the biomethane yield. Co-digestion of rice straw with nitrogen-rich substrates is proven to be an effective way to balance the carbon to nitrogen ratio, in turn, leads to nutrient balance and enhance the biomethane yields of anaerobic co-digestion system. Moreover, pretreatment is another effective strategy; physical, chemical and biological pretreatments are reviewed in the article which improved the performance of digester. The utilisation of rice straw along with other co-substrates and appropriate pretreatment may be a recommended sustainable solution for preventing environmental and health hazards.
Collapse
Affiliation(s)
- Sagarika Mothe
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, India.
| | | |
Collapse
|
12
|
Matsakas L, Sarkar O, Jansson S, Rova U, Christakopoulos P. A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane. BIORESOURCE TECHNOLOGY 2020; 316:123973. [PMID: 32799045 DOI: 10.1016/j.biortech.2020.123973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Rising environmental concerns and the imminent depletion of fossil resources have sparked a strong interest towards the production of renewable energy such as biomethane. Inclusion of alternative feedstock's such as lignocellulosic biomass could further expand the production of biomethane. The present study evaluated the potential of a novel hybrid organosolv-steam explosion fractionation for delivering highly digestible pretreated solids from birch and spruce woodchips. The highest methane production yield was 176.5 mLCH4 gVS-1 for spruce and 327.2 mL CH4 gVS-1 for birch. High methane production rates of 1.0-6.3 mL min-1 (spruce) and 6.0-35.5 mL min-1 (birch) were obtained, leading to a rapid digestion, with 92% of total methane from spruce being generated in 80 h and 95% of that from birch in 120 h. These results demonstrate the elevated potential of the novel method to fractionate spruce and birch biomass and deliver cellulose-rich pretreated solids with superior digestibility.
Collapse
Affiliation(s)
- Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden.
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| |
Collapse
|
13
|
Life Cycle Assessment Analysis of Alfalfa and Corn for Biogas Production in a Farm Case Study. Processes (Basel) 2020. [DOI: 10.3390/pr8101285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the last years the greenhouse effect has been significantly intensified due to human activities, generating large additional amounts of Greenhouse gases (GHG). The fossil fuels are the main causes of that. Consequently, the attention on the composition of the national fuel mix has significantly grown, and the renewables are becoming a more significant component. In this context, biomass is one of the most important sources of renewable energy with a great potential for the production of energy. The study has evaluated, through an LCA (Life Cycle Assessment) study, the attitude of alfalfa (Medicago sativa) as “no food” biomass alternative to maize silage (corn), in the production of biogas from anaerobic digestion. Considering the same functional unit (1 m3 of biogas from anaerobic digestion) and the same time horizon, alfalfa environmental impact was found to be much comparable to that of corn because it has an impact of about 15% higher than corn considering the total score from different categories and an impact of 5% higher of corn considering only greenhouse gases. Therefore, the analysis shows a similar environmental load in the use of alfalfa biomass in energy production compared to maize. Corn in fact, despite a better yield per hectare and yield of biogas, requires a greater amount of energy inputs to produce 1m3 of biogas, while alfalfa, which requires less energy inputs in its life cycle, has a lower performance in terms of yield. The results show the possibility to alternate the two crops for energy production from an environmental perspective.
Collapse
|
14
|
Effect of nanobubble water on anaerobic methane production from lignin. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04250-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Abraham A, Mathew AK, Park H, Choi O, Sindhu R, Parameswaran B, Pandey A, Park JH, Sang BI. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 301:122725. [PMID: 31958690 DOI: 10.1016/j.biortech.2019.122725] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 05/24/2023]
Abstract
The inclusion of a pretreatment step in anaerobic digestion processes increases the digestibility of lignocellulosic biomass and enhances biogas yields by promoting lignin removal and the destruction of complex biomass structures. The increase in surface area enables the efficient interaction of microbes or enzymes, and a reduction in cellulose crystallinity improves the digestion process under anaerobic conditions. The pretreatment methods may vary based on the type of the lignocellulosic biomass, the nature of the subsequent process and the overall economics of the process. An improved biogas production by 1200% had been reported when ionic liquid used as pretreatment strategy for anaerobic digestion. The different pretreatment techniques used for lignocellulosic biomasses are generally grouped into physical, chemical, physicochemical, and biological methods. These four modes of pretreatment on lignocellulosic biomass and their impact on biogas production process is the major focus of this review article.
Collapse
Affiliation(s)
- Amith Abraham
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Anil K Mathew
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyojung Park
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Okkyoung Choi
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Jung Han Park
- Science&Technology Policy Coordination Division, Ministry of Science, ICT and Future Planning, 47 Gwanmun-ro, Gwacheon-si, Gyeonggi-do 13809, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
16
|
Chang CC, Li R. Agricultural waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1150-1167. [PMID: 31433884 DOI: 10.1002/wer.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The management of agricultural waste has become very important because the inappropriate disposal yields negative effects on the environment. The resource recovery from agricultural waste which converts waste into available resources can reduce the waste and new resource consumption. This review summarizes the 2018 researches of over three hundred scholar papers from several aspects: agricultural waste, and, waste chemical characterization, agricultural waste material, adsorption, waste energy, composting, waste biogas, agricultural waste management, and others.
Collapse
Affiliation(s)
- Chein-Chi Chang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| | - Rundong Li
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
| |
Collapse
|
17
|
Guo Z, Sun Y, Pan SY, Chiang PC. Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1282. [PMID: 30974807 PMCID: PMC6479948 DOI: 10.3390/ijerph16071282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022]
Abstract
Wastewater treatment can consume a large amount of energy to meet discharge standards. However, wastewater also contains resources which could be recovered for secondary uses under proper treatment. Hence, the goal of this paper is to review the available green energy and biomass energy that can be utilized in wastewater treatment plants. Comprehensive elucidation of energy-efficient technologies for wastewater treatment plants are revealed. For these energy-efficient technologies, this review provides an introduction and current application status of these technologies as well as key performance indicators for the integration of green energy and energy-efficient technologies. There are several assessment perspectives summarized in the evaluation of the integration of green energy and energy-efficient technologies in wastewater treatment plants. To overcome the challenges in wastewater treatment plants, the Internet of Things (IoT) and green chemistry technologies for the water and energy nexus are proposed. The findings of this review are highly beneficial for the development of green energy and energy-efficient wastewater treatment plants. Future research should investigate the integration of green infrastructure and ecologically advanced treatment technologies to explore the potential benefits and advantages.
Collapse
Affiliation(s)
- Ziyang Guo
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan.
- Carbon Cycle Research Center, National Taiwan University, Taipei City 10672, Taiwan.
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China.
| | - Shu-Yuan Pan
- Department of Bioenvironmental System Engineering, National Taiwan University, Taipei City 10617, Taiwan.
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Pen-Chi Chiang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan.
- Carbon Cycle Research Center, National Taiwan University, Taipei City 10672, Taiwan.
| |
Collapse
|
18
|
Koçer AT, Özçimen D. Investigation of the biogas production potential from algal wastes. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:1100-1105. [PMID: 30249162 DOI: 10.1177/0734242x18798447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, researchers focused their attention on biogas production more than ever to meet the energy demand. Especially, biogas obtained from algal wastes has become a trending research area owing to the high content of volatile solids in algae. The main purpose of this study is to determine the biogas production potential from algal wastes and examine the effect of temperature and particle size parameters on biogas yield. A comparison was made between the biogas production potential of microalgal wastes, obtained after oil extraction, and macroalgal wastes collected from coastal areas. It was found that algal biogas yield is directly proportional to temperature and inversely proportional to particle size. Optimal conditions for biogas production from algal wastes were determined as the temperature of 55 °C, a particle size of 200 μm, a residence time of 30 days and an alga-inoculum ratio of 1:4 (w:w). Highest biogas yield obtained under these conditions was found as 342.59 cm3 CH4 g-1 VS with Ulva lactuca. Under thermophilic conditions, both micro- and macroalgal biogas yields were comparable. It can be concluded that algal biomass is a good source for biogas production, although further research is needed to increase biogas yield and quality.
Collapse
Affiliation(s)
- Anıl Tevfik Koçer
- Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Didem Özçimen
- Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. ENERGIES 2018; 11:1797. [PMID: 30881604 PMCID: PMC6420082 DOI: 10.3390/en11071797] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With regard to social and environmental sustainability, second-generation biofuel and biogas production from lignocellulosic material provides considerable potential, since lignocellulose represents an inexhaustible, ubiquitous natural resource, and is therefore one important step towards independence from fossil fuel combustion. However, the highly heterogeneous structure and recalcitrant nature of lignocellulose restricts its commercial utilization in biogas plants. Improvements therefore rely on effective pretreatment methods to overcome structural impediments, thus facilitating the accessibility and digestibility of (ligno)cellulosic substrates during anaerobic digestion. While chemical and physical pretreatment strategies exhibit inherent drawbacks including the formation of inhibitory products, biological pretreatment is increasingly being advocated as an environmentally friendly process with low energy input, low disposal costs, and milder operating conditions. Nevertheless, the promising potential of biological pretreatment techniques is not yet fully exploited. Hence, we intended to provide a detailed insight into currently applied pretreatment techniques, with a special focus on biological ones for downstream processing of lignocellulosic biomass in anaerobic digestion.
Collapse
|