1
|
Bouhia Y, Hafidi M, Ouhdouch Y, Soulaimani A, Zeroual Y, Lyamlouli K. Microbial intervention improves pollutant removal and semi-liquid organo-mineral fertilizer production from olive mill wastewater sludge and rock phosphate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120317. [PMID: 38387346 DOI: 10.1016/j.jenvman.2024.120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Olive mill wastewater sludge (OMWS) represents a residual pollutant generated by the olive oil industry, often stored in exposed evaporation ponds, leading to contamination of nearby land and water resources. Despite its promising composition, the valorization of OMWS remains underexplored compared to olive mill wastewater (OMW). This study aims to identify potent native microbial species within OMWS suitable for bioremediation and its transformation into a high-value organic fertilizer. The microbial screening, based on assessing OMWS tolerance and phosphate solubilization properties in vitro, followed by a singular inoculation using a mixture of OMWS and rock phosphate (RP). Identification of FUN 06 (Galactomyces Geotrichum), a fungal species, employed as an inoculant in the treatment of sterile OMWS supplemented with RP. Results demonstrate that fungal inoculation notably diminished OMWS phytotoxicity while enhancing its physicochemical parameters, nutrient concentrations, and removal of toxic organic compounds by up to 90% compared to the control, and enhances plant growth, offering a sustainable approach to tackle environmental concerns. Additionally, metataxonomic analysis unveiled FUN 06's propensity to enhance the presence of microbial species engaged in pollutant degradation. However, higher RP dosage (10%) appeared to adversely affect bioprocess efficiency, suggesting a potential dose-related effect. Overall, FUN 06, isolated from OMWS evaporation ponds, shows promise for effective bioremediation and sustainable reuse. In fact, our results indicate that targeted microbial inoculation stands as an effective strategy for mitigating pollutants in OMWS, facilitating its conversion into a nutrient-rich organo-mineral fertilizer suitable for direct use, promoting its beneficial reuse in agriculture, thereby presenting a promising avenue for olive oil waste management.
Collapse
Affiliation(s)
- Youness Bouhia
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco.
| | - Mohamed Hafidi
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences University Mohammed VI Polytechnic (UM6P), Laayoune, 70000, Morocco
| | - Yedir Ouhdouch
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences University Mohammed VI Polytechnic (UM6P), Laayoune, 70000, Morocco
| | - Aziz Soulaimani
- Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | | | - Karim Lyamlouli
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Bacha S, Arous F, Chouikh E, Jaouani A, Gtari M, Charradi K, Attia H, Ghorbel D. Exploring Bacillus amyloliquefaciens strain OM81 for the production of polyhydroxyalkanoate (PHA) bioplastic using olive mill wastewater. 3 Biotech 2023; 13:415. [PMID: 38009166 PMCID: PMC10667205 DOI: 10.1007/s13205-023-03808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
In this study, bacterial strains isolated from olive oil mill wastewater assigned to Bacillus (n = 4) and Klebsiella (n = 1) genera, were evaluated for their ability to accumulate intracellular PHA granules using Sudan Black staining. A maximum PHA production of 0.14 g/L (i.e., 30.2% wt./wt. in dry biomass) was observed in Bacillus amyloliquefaciens strain OM81 after 72 h of incubation in the presence of 2% glucose (synthetic medium). To reduce bioplastic production costs and recover a polluting product, olive mill wastewater was tested as a carbon source. In this context, the maximum growth (1.45 g/L) was observed in the presence of 50% olive mill wastewater. After extracting the biopolymers with chloroform, quantitative and qualitative analyses were conducted using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR showed an absorption band at 1730 cm-1 assigned to the elongation of the PHB carbonyl groups. This approach offers a dual benefit of reducing pollution and bioplastic production costs. The Bacillus amyloliquefaciens strain OM81 showed promising results for PHAs production, making it a potential candidate for further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03808-4.
Collapse
Affiliation(s)
- Samar Bacha
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
| | - Fatma Arous
- LR22ES04 Bioresources, Environment and Biotechnologies (BeB), University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 1006 Tunis, Tunisia
| | - Emna Chouikh
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
| | - Atef Jaouani
- LR22ES04 Bioresources, Environment and Biotechnologies (BeB), University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 1006 Tunis, Tunisia
| | - Maher Gtari
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
- USCR Bactériologie Moléculaire & Génomique, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
- Food Analysis, Valorization, and Safety Laboratory, LAVASA, LR11ES45, BPW, University of Sfax, ENIS, 3038 Sfax, Tunisia
| | - Khaled Charradi
- Nanomaterials and Systems for Renewable Energy Laboratory, Research and Technology Center of Energy, Technopark Borj Cedria, BP 095, Hammam-Lif, Tunisia
| | - Hamadi Attia
- Food Analysis, Valorization, and Safety Laboratory, LAVASA, LR11ES45, BPW, University of Sfax, ENIS, 3038 Sfax, Tunisia
| | - Dorra Ghorbel
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
- Food Analysis, Valorization, and Safety Laboratory, LAVASA, LR11ES45, BPW, University of Sfax, ENIS, 3038 Sfax, Tunisia
| |
Collapse
|
3
|
Biotreatment Potential and Microbial Communities in Aerobic Bioreactor Systems Treating Agro-Industrial Wastewaters. Processes (Basel) 2022. [DOI: 10.3390/pr10101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The thriving agro-industry sector accounts for an essential part of the global gross domestic product, as the need for food and feed production is rising. However, the industrial processing of agricultural products requires the use of water at all stages, which consequently leads to the production of vast amounts of effluents with diverse characteristics, which contain a significantly elevated organic content. This fact reinforces the need for action to control and minimize the environmental impact of the produced wastewater, and activated sludge systems constitute a highly reliable solution for its treatment. The current review offers novel insights on the efficiency of aerobic biosystems in the treatment of agro-industrial wastewaters and their ecology, with an additional focus on the biotechnological potential of the activated sludge of such wastewater treatment plants.
Collapse
|
4
|
Martínez-Gallardo MR, López MJ, Jurado MM, Suárez-Estrella F, López-González JA, Sáez JA, Moral R, Moreno J. Bioremediation of Olive Mill Wastewater sediments in evaporation ponds through in situ composting assisted by bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135537. [PMID: 31761371 DOI: 10.1016/j.scitotenv.2019.135537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The common method for the disposal of olive oil mill wastewater (OMW) has been its accumulation in evaporation ponds where OMW sediments concentrate. Due to the phytotoxic and antimicrobial effect of OMW, leaks from ponds can pollute soils and water bodies. This work focuses on the search for microorganisms that can be used as inocula for bioremediation of polluted matrices in OMW ponds by means of in situ composting. Two fungi isolated from OMW sediments, Aspergillus ochraceus H2 and Scedosporium apiospermum H16, presented suitable capabilities for this use as a consortium. Composting eliminated the phyto- and ecotoxicity of OMW sediments by depleting their main toxic components. Inoculation with the fungal consortium improved the bioremediation efficacy of the technique by hastening the decrease of phytotoxicity and ecotoxicity and enhancing phytostimulant property of compost produced. This procedure constitutes a promising strategy for bioremediation of OMW polluted sites.
Collapse
Affiliation(s)
- Maria R Martínez-Gallardo
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - María J López
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain.
| | - Macarena M Jurado
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Francisca Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Juan A López-González
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - José A Sáez
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, Ctra. Beniel Km 3.2, 03312 Orihuela (Alicante), Spain
| | - Raúl Moral
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, Ctra. Beniel Km 3.2, 03312 Orihuela (Alicante), Spain
| | - Joaquín Moreno
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
5
|
Chang CC, DiGiovanni K, Mei Y. Sustainability. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1129-1149. [PMID: 31433901 DOI: 10.1002/wer.1210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This review on Sustainability covers selected 2018 publications on the focus of sustainability. It is divided into the following sections: (a) Water quantity; (b) Water quality; (c) Climate change and resilience; (d) Planning and ecosystem evaluation; (e) Life cycle assessment (LCA) applications; (f) Sustainable management; (g) Sustainability and asset management; (h) Sustainability in wastewater treatment; (i) Sustainable water and wastewater utilities; (j) Sustainable water resource management.
Collapse
Affiliation(s)
- Chein-Chi Chang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, China
- Department of Engineering and Technical Services, D C Water and Sewer Authority, Washington, District of Columbia
| | | | - Ying Mei
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|