1
|
Cao HH, Kong WW, Ling B, Wang ZY, Zhang Y, Guo ZX, Liu SH, Xu JP. Bmo-miR-3351 modulates glutathione content and inhibits BmNPV proliferation by targeting BmGSTe6 in Bombyx mori. INSECT SCIENCE 2024; 31:1378-1396. [PMID: 38258370 DOI: 10.1111/1744-7917.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Wei-Wei Kong
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Bing Ling
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhi-Yi Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying Zhang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhe-Xiao Guo
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shi-Huo Liu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
2
|
Yang X, Liu P, Yu H, Ling M, Ma M, Wang Q, Tang X, Shen Z, Zhang Y. Comparative analysis of the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties. Microb Pathog 2024; 191:106649. [PMID: 38636568 DOI: 10.1016/j.micpath.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.
Collapse
Affiliation(s)
- Xu Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Pai Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Haodong Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Min Ling
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Mingzhen Ma
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Qiang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Zhongyuan Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
3
|
Wang X, Ma G, Ren F, Awais MM, Sun J. Bombyx mori nucleopolyhedrovirus induces BmFABP1 downregulation to promote viral proliferation. INSECT SCIENCE 2023; 30:1595-1606. [PMID: 37144516 DOI: 10.1111/1744-7917.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Fatty acid binding proteins (FABPs) play an important role as endogenous cytoprotectants. However, studies on FABPs in invertebrates are scarce. Previously, we discovered Bombyx mori fatty acid binding protein 1 (BmFABP1) through co-immunoprecipitation. Here, we cloned and identified BmFABP1 from BmN cells. The results of immunofluorescence indicated that BmFABP1 was localized in the cytoplasm. The tissue expression profile of silkworms showed that BmFABP1 was expressed in all tissues except hemocytes. The expression level of BmFABP1 gradually decreases in BmN cells and B. mori larvae after infection with B. mori nucleopolyhedrovirus (BmNPV). Upregulation of BmFABP1 expression through overexpression or WY14643 treatment significantly inhibited the replication of BmNPV, while downregulation of BmFABP1 expression by RNA interference promoted the replication of BmNPV. The same results were obtained in experiments on silkworm larvae. These results suggest that BmNPV induces BmFABP1 downregulation to promote its proliferation and that BmFABP1 has a potential anti-BmNPV role. This is the first report on the antiviral effect of BmFABP1 in silkworms and provides new insights into the study of the FABP protein family. Also, it is important to study BmNPV resistance in silkworms to breed transgenic silkworms with BmNPV resistance.
Collapse
Affiliation(s)
- Xiong Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangyu Ma
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Bravo S, Moya J, Leiva F, Guzman O, Vidal R. Transcriptome analyses reveal key roles of alternative splicing regulation in atlantic salmon during the infectious process of Piscirickettsiosis disease. Heliyon 2023; 9:e22377. [PMID: 38058636 PMCID: PMC10696053 DOI: 10.1016/j.heliyon.2023.e22377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
In the Chilean salmon farming industry, infection by Piscirickettsia salmonis is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases. In this study, we used RNA data to survey P. salmonis-induced modifications in the AS of Atlantic salmon and found that P. salmonis infection promoted a substantial number (158,668) of AS events. Differentially spliced genes (DSG) sensitive to Piscirickettsiosis were predominantly enriched in genes involved in RNA processing, splicing and spliceosome processes (e.g., hnRNPm, hnRPc, SRSF7, SRSF45), whereas among the DSG of resistant and susceptible to Piscirickettsiosis, several metabolic and immune processes were found, most notably associated to the regulation of GTPase, lysosome and telomere organization-maintenance. Furthermore, we found that DSG were mostly not differentially expressed (5-7 %) and were implicated in distinct biological pathways. Therefore, our results underpin AS achieving a significant regulatory performance in the response of salmonids to Piscirickettsiosis.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 of.26, Puerto Varas, Chile
| | - Francisco Leiva
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Potential Proteins Interactions with Bombyx mori Nucleopolyhedrovirus Revealed by Co-Immunoprecipitation. INSECTS 2022; 13:insects13070575. [PMID: 35886751 PMCID: PMC9324236 DOI: 10.3390/insects13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022]
Abstract
Virus–host interactions are critical for virus replication, virulence, and pathogenicity. The Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical model baculovirus, representing one of the most common and harmful pathogens in sericulture. Herein, we used co-immunoprecipitation to identify candidate proteins with potential interactions with BmNPV. First, a recombinant BV virus particle rBmBV-egfp-p64-3×flag-gp64sp was constructed using a MultiBac baculovirus multigene expression system. Co-immunoprecipitation experiments were then performed with the recombinant BV virus infected with BmN cells and Dazao silkworms. LC-MS/MS analysis revealed a total of 845 and 1368 candidate proteins were obtained from BmN cells and silkworm samples, respectively. Bioinformatics analysis (Gene Ontology, KEGG Pathway) was conducted for selection of proteins with significant enrichment for further confirmation of the effects on BmNPV replication. Overall, the results showed that SEC61 and PIC promoted the replication of BmNPV, while FABP1 inhibited the replication of BmNPV. In summary, this study reveals the potential proteins involved in BmNPV invasion and proliferation in the host and provides a platform for identifying the potential receptor proteins of BmNPV.
Collapse
|
6
|
Qian H, Guo H, Zhang X, Liu M, Zhao G, Xu A, Li G. Metabolic characterization of hemolymph in Bombyx mori varieties after Bombyx mori nucleopolyhedrovirus infection by GC-MS-based metabolite profiling. Arch Virol 2022; 167:1637-1648. [PMID: 35650326 DOI: 10.1007/s00705-022-05463-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
The "Huakang 2" silkworm variety, bred by the Sericulture Research Institute of the Chinese Academy of Agricultural Sciences, is highly resistant to Bombyx mori nucleopolyhedrovirus (BmNPV) and effectively solves the issue of frequent Bombyx mori nuclear polyhedrosis in sericultural production. The molecular mechanism of its resistance to BmNPV, however, is still unknown. The purpose of the present study was therefore to identify these anti-BmNPV mechanisms by using metabolomics in combination with transcriptomics after subcutaneous injection of budded virus (BV) with high concentrations of BmNPV from specimens of the Baiyu N variety (which is highly resistant to BmNPV) and the Baiyu variety (which is sensitive to BmNPV). A total of 375 differential metabolites were identified, which mainly included sugars, acids, amines, alcohols, glycosides, and other small molecules. KEGG enrichment analysis and functional clustering of differential metabolites identified possible metabolic pathways, including tyrosine metabolism, oxidative phosphorylation, and alanine, aspartate, and glutamate metabolism. The differentially expressed genes (DEGs) identified by transcriptome analysis were annotated in KEGG. Association analysis showed that the metabolic pathways of different silkworm varieties are affected differently by BmNPV infection, triggering a series of complex physiological and biochemical changes in the organism. In particular, oxidative phosphorylation might be an essential pathway involved in regulation of disease resistance.
Collapse
Affiliation(s)
- Heying Qian
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China. .,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China.
| | - Huimin Guo
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xiao Zhang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mingzhu Liu
- The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China
| | - Guodong Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China
| | - Anying Xu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China
| | - Gang Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China. .,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China.
| |
Collapse
|
7
|
Xiao Q, Dong ZQ, Zhu Y, Zhang Q, Yang X, Xiao M, Chen P, Lu C, Pan MH. Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. INSECTS 2021; 12:insects12121098. [PMID: 34940186 PMCID: PMC8708760 DOI: 10.3390/insects12121098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Baculoviruses arrest the cell cycle in the S or G2/M phase in insect cells, but the exact mechanism of this process still remains obscure. Bombyx mori nucleopolyhedrovirus (BmNPV), one of the best characterized baculoviruses, is an important pathogen in silkworms. In the present study, we determined that downregulation of BmCDK1 and BmCyclin B expression was required for BmNPV-mediated G2/M phase arrest, which plays an essential role in facilitating BmNPV replication. Further investigations showed that BmNPV IAP1 interacted with BmCDK1. The overexpression of the BmNPV iap1 gene led to the accumulation of cells in the G2/M phase, and BmNPV iap1 gene knockdown attenuated the effect of BmNPV-mediated G2/M phase arrest. These findings enhance the understanding of BmNPV pathogenesis, and indicate a novel mechanism through which baculoviruses impact the cell cycle progression. Abstract Understanding virus–host interaction is very important for delineating the mechanism involved in viral replication and host resistance. Baculovirus, an insect virus, can cause S or G2/M phase arrest in insect cells. However, the roles and mechanism of Baculovirus-mediated S or G2/M phase arrest are not fully understood. Our results, obtained using flow cytometry (FCM), tubulin-labeling, BrdU-labeling, and CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS), showed that Bombyx mori nucleopolyhedrovirus (BmNPV) induced G2/M phase arrest and inhibited cellular DNA replication as well as cell proliferation in BmN-SWU1 cells. We found that BmNPV induced G2/M arrest to support its replication and proliferation by reducing the expression of BmCDK1 and BmCyclin B. Co-immunoprecipitation assays confirmed that BmNPV IAP1 interacted with BmCDK1. BmNPV iap1 was involved in the process of BmNPV-induced G2/M arrest by reducing the content of BmCDK1. Taken together, our results improve the understanding of the virus–host interaction network, and provide a potential target gene that connects apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Qin Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xiu Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| |
Collapse
|
8
|
Wang G, Xu D, Guo D, Zhang Y, Mai X, Zhang B, Cao H, Zhang S. Unraveling the innate immune responses of Bombyx mori hemolymph, fat body, and midgut to Bombyx mori nucleopolyhedrovirus oral infection by metabolomic analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21848. [PMID: 34676595 DOI: 10.1002/arch.21848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) infection causes a series of physiological and pathological changes in Bombyx mori (B. mori). Here, a metabolomic study of the innate immunity organs including hemolymph, fat body, and midgut of the silkworm strain Dazao following BmNPV challenge was conducted to reveal the metabolic variations in B. mori. Compared to the control, 4964 and 4942 features with 4077 and 4327 high-quality features were generated under positive and negative modes, respectively, from BmNPV-infected larvae. The principal component analysis and supervised learning method using partial least squares discrimination analysis demonstrated good analytical stability and experimental reproducibility of the metabolic profiles. Based on database annotations, a total of 296, 108, and 215 differential expressed metabolites (DEMs) were identified from BmNPV-infected group of hemolymph, fat body, and midgut, respectively, which were all mainly grouped into carboxylic acids and derivatives, fatty acyls, and glycerophospholipids. Kyoto Encyclopedia of Genes and Genomes Database enrichment analysis of the DEMs showed that amino acid metabolism was increased at 24 h after BmNPV infection. BmNPV induction was adopted to significantly alter a series of immune-related pathways including phospholipase D signaling pathway, FoxO signaling pathway, metabolism of xenobiotics by cytochrome P450, melanogenesis, membrane transport, carbohydrate metabolism, and lipid metabolism. The different levels of expression of several DEMs including l-glutamate, naphthalene, 3-succinoylpyridine 1-acyl-sn-glycerol 3-phosphate, and l-tyrosine which were involved in those pathways exhibited the immune responses of B. mori to BmNPV infection. Our findings are valuable for a better understanding of the antiviral mechanism of B. mori underlying the interaction between the silkworm and BmNPV.
Collapse
Affiliation(s)
- Guobao Wang
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Dandan Xu
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Dingge Guo
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Yuzhuo Zhang
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Xiaoxi Mai
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Baoren Zhang
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Hui Cao
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Shengxiang Zhang
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Tang M, He S, Gong X, Lü P, Taha RH, Chen K. High-Quality de novo Chromosome-Level Genome Assembly of a Single Bombyx mori With BmNPV Resistance by a Combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing. Front Genet 2021; 12:718266. [PMID: 34603381 PMCID: PMC8481875 DOI: 10.3389/fgene.2021.718266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The reference genomes of Bombyx mori (B. mori), Silkworm Knowledge-based database (SilkDB) and SilkBase, have served as the gold standard for nearly two decades. Their use has fundamentally shaped model organisms and accelerated relevant studies on lepidoptera. However, the current reference genomes of B. mori do not accurately represent the full set of genes for any single strain. As new genome-wide sequencing technologies have emerged and the cost of high-throughput sequencing technology has fallen, it is now possible for standard laboratories to perform full-genome assembly for specific strains. Here we present a high-quality de novo chromosome-level genome assembly of a single B. mori with nuclear polyhedrosis virus (BmNPV) resistance through the integration of PacBio long-read sequencing, Illumina short-read sequencing, and Hi-C sequencing. In addition, regular bioinformatics analyses, such as gene family, phylogenetic, and divergence analyses, were performed. The sample was from our unique B. mori species (NB), which has strong inborn resistance to BmNPV. Our genome assembly showed good collinearity with SilkDB and SilkBase and particular regions. To the best of our knowledge, this is the first genome assembly with BmNPV resistance, which should be a more accurate insect model for resistance studies.
Collapse
Affiliation(s)
- Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Suqun He
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Department of Medical Rheumatology, Columbia University, New York, NY, United States
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rehab H Taha
- Department of Sericulture, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Hua X, Zhang Q, Xu W, Wang X, Wang F, Zhao P, Xia Q. The Antiviral Molecule 5-Pyridoxolactone Identified Post BmNPV Infection of the Silkworm, Bombyx mori. Int J Mol Sci 2021; 22:7423. [PMID: 34299043 PMCID: PMC8307608 DOI: 10.3390/ijms22147423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes great economic losses in sericulture. Many genes play a role in viral infection of silkworms, but silkworm metabolism in response to BmNPV infection is unknown. We studied BmE cells infected with BmNPV. We performed liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomics analysis of the cytosolic extract and identified 36, 76, 138, 101, 189, and 166 different molecules at 3, 6, 12, 24, 48, and 72 h post BmNPV infection (hpi) compared with 0 hpi. Compounds representing different areas of metabolism were increased in cells post BmNPV infection. These areas included purine metabolism, aminoacyl-tRNA biosynthesis, and ABC transporters. Glycerophosphocholine (GPC), 2-hydroxyadenine (2-OH-Ade), gamma-glutamylcysteine (γ-Glu-Cys), hydroxytolbutamide, and 5-pyridoxolactone glycerophosphocholine were continuously upregulated in BmE cells post BmNPV infection by heat map analysis. Only 5-pyridoxolactone was found to strongly inhibit the proliferation of BmNPV when it was used to treat BmE cells. Fewer infected cells were detected and the level of BmNPV DNA decreased with increasing 5-pyridoxolactone in a dose-dependent manner. The expression of BmNPV genes ie1, helicase, GP64, and VP39 in BmE cells treated with 5-pyridoxolactone were strongly inhibited in the BmNPV infection stage. This suggested that 5-pyridoxolactone may suppress the entry of BmNPV. The data in this study characterize the metabolism changes in BmNPV-infected cells. Further analysis of 5-pyridoxolactone, which is a robust antiviral molecule, may increase our understanding of antiviral immunity.
Collapse
Affiliation(s)
- Xiaoting Hua
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Quan Zhang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Wei Xu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaogang Wang
- China Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academay of Chinese Materia Medica, Chongqing 400065, China;
| | - Fei Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Front Immunol 2020; 11:2030. [PMID: 32983149 PMCID: PMC7492552 DOI: 10.3389/fimmu.2020.02030] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) with antiviral activity (antiviral peptides: AVPs) have become a research hotspot and already show immense potential to become pharmaceutically available antiviral drugs. AVPs have exhibited huge potential in inhibiting viruses by targeting various stages of their life cycle. Insects are the most speciose group of animals that inhabit almost all ecosystems and habitats on the land and are a rich source of natural AMPs. However, insect AVP mining, functional research, and drug development are still in their infancy. This review aims to summarize the currently validated insect AVPs, explore potential new insect AVPs and to discuss their possible mechanism of synthesis and action, with a view to providing clues to unravel the mechanisms of insect antiviral immunity and to develop insect AVP-derived antiviral drugs.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Zhu Z, Guan Z, Liu G, Wang Y, Zhang Z. SGID: a comprehensive and interactive database of the silkworm. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5677404. [PMID: 31836898 PMCID: PMC6911161 DOI: 10.1093/database/baz134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 11/12/2022]
Abstract
Although the domestic silkworm (Bombyx mori) is an important model and economic animal, there is a lack of comprehensive database for this organism. Here, we developed the silkworm genome informatics database (SGID). It aims to bring together all silkworm-related biological data and provide an interactive platform for gene inquiry and analysis. The function annotation in SGID is thorough and covers 98% of the silkworm genes. The annotation details include function description, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, subcellular location, transmembrane topology, protein secondary/tertiary structure, homologous group and transcription factor. SGID provides genome-scale visualization of population genetics test results based on high-depth resequencing data of 158 silkworm samples. It also provides interactive analysis tools of transcriptomic and epigenomic data from 79 NCBI BioProjects. SGID will be extremely useful to silkworm research in the future.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Zhufen Guan
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Yawang Wang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China.,Khoury College of Computer Sciences, Northeastern University, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Ze Zhang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| |
Collapse
|