1
|
Mishra A, Chhabra M. Co-culturing Chlorella vulgaris and Cystobasidium oligophagum JRC1 in the microbial fuel cell cathode for lipid biosynthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57338-57345. [PMID: 37610543 DOI: 10.1007/s11356-023-29232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
This study investigated the effect of co-culturing the photobiont and mycobiont in the microbial fuel cell (MFC) cathode on biomass production, lipid generation, and power output. Chlorella vulgaris provides oxygen and nutrients for the yeast Cystobasidium oligophagum JRC1, while the latter offers CO2 and quench oxygen for higher algal growth. The MFC with co-culture enhanced the lipid output of biomass by 28.33%, and the total yield and productivity were 1.47 ± 0.18 g/l and 0.123 g/l/day, respectively. Moreover, with co-culture, the open circuit voltage of 685 ± 11 mV was two times higher than algae alone. The specific growth rate (day-1) at the cathode was 0.367 ± 0.04 in co-culture and 0.288 ± 0.05 with C. vulgaris only. The power density of the system was 5.37 ± 0.21 mW/m2 with 75.88 ± 1.89% of COD removal. The co-culture thus proved beneficial at the MFC cathode in terms of total energy output as 11.5 ± 0.035 kWh/m3, which was 1.4-fold higher than algae alone.
Collapse
Affiliation(s)
- Akanksha Mishra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IITJ), Jodhpur, Rajasthan, 342037, India
| | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IITJ), Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
2
|
Koukoumaki DI, Papanikolaou S, Ioannou Z, Mourtzinos I, Sarris D. Single-Cell Protein and Ethanol Production of a Newly Isolated Kluyveromyces marxianus Strain through Cheese Whey Valorization. Foods 2024; 13:1892. [PMID: 38928833 PMCID: PMC11203209 DOI: 10.3390/foods13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The present work examined the production of single-cell protein (SCP) by a newly isolated strain of Kluyveromyces marxianus EXF-5288 under increased lactose concentration of deproteinized cheese whey (DCW) and different temperatures (in °C: 20.0, 25.0, 30.0 and 35.0). To the best of the authors' knowledge, this is the first report examining the ability of Kluyveromyces marxianus species to produce SCP at T = 20.0 °C. Different culture temperatures led to significant differences in the strain's growth, while maximum biomass and SCP production (14.24 ± 0.70 and 6.14 ± 0.66 g/L, respectively) were observed in the cultivation of K. marxianus strain EXF-5288 in shake-flask cultures at T = 20.0 °C. Increased DCW lactose concentrations (35.0-100.0 g/L) led to increased ethanol production (Ethmax = 35.5 ± 0.2 g/L), suggesting that K. marxianus strain EXF-5288 is "Crabtree-positive". Batch-bioreactor trials shifted the strain's metabolism to alcoholic fermentation, favoring ethanol production. Surprisingly, K. marxianus strain EXF-5288 was able to catabolize the produced ethanol under limited carbon presence in the medium. The dominant amino acids in SCP were glutamate (15.5 mg/g), aspartic acid (12.0 mg/g) and valine (9.5 mg/g), representing a balanced nutritional profile.
Collapse
Affiliation(s)
- Danai Ioanna Koukoumaki
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (D.I.K.); (Z.I.)
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Zacharias Ioannou
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (D.I.K.); (Z.I.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Sarris
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (D.I.K.); (Z.I.)
| |
Collapse
|
3
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Gutiérrez-Hernández CA, Hernández-Almanza A, Hernández-Beltran JU, Balagurusamy N, Hernández-Teran F. Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
6
|
Sharma A, Chhabra M. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. BIORESOURCE TECHNOLOGY 2021; 338:125499. [PMID: 34260967 DOI: 10.1016/j.biortech.2021.125499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study reports the use of Chlamydomonas reinhardtiiat the cathode in a photosynthetic microbial fuel cell (PMFC). The PMFC produced power and current density of 15.21 W m-3 and 39 A m-3, respectively. The specific growth rate of algae culture at the cathode was 0.284 day-1. The system achieved COD removal at 73.30% with a Coulombic efficiency of 9.068%. The usability of algae biomass was assessed in terms of its total phenol content (157.69 mg GAE/g algae DW), antioxidant activity (IC50 = 67.07 µg/ml), total Chlorophyll (18.95 mg/g), total Carotenoids (2.40 mg/g), and antibacterial properties against known pathogens. Overall, the study's findings suggested thatC. reinhardtiisupports high power output from a PMFC and is highly resourceful in terms of value-added products.
Collapse
Affiliation(s)
- Arti Sharma
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342037, India
| | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
7
|
Wang ZP, Zhang XY, Ma Y, Ye JR, Jiang J, Wang HY, Chen W. Whole conversion of agro-industrial wastes rich in galactose-based carbohydrates into lipid using oleaginous yeast Aureobasidium namibiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:181. [PMID: 34526122 PMCID: PMC8442318 DOI: 10.1186/s13068-021-02031-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Raw materials composed of easily assimilated monosaccharides have been employed as carbon source for production of microbial lipids. Nevertheless, agro-industrial wastes rich in galactose-based carbohydrates have not been introduced as feedstocks for oleaginous yeasts. RESULTS In this study, Aureobasidium namibiae A12 was found to efficiently accumulate lipid from soy molasses and whey powder containing galactose-based carbohydrates, with lipid productions of 5.30 g/L and 5.23 g/L, respectively. Over 80% of the fatty acids was C16:0, C18:0, C18:1, and C18:2. All kinds of single sugar components in the two byproducts were readily converted into lipids, with yields ranging between 0.116 g/g and 0.138 g/g. Three α-galactosidases and five β-galactosidases in the strain were cloned and analyzed. Changes of transcriptional levels indicated GalB and GalC were key α-galactosidases, and GalG was key β-galactosidase. In 10 L fermentor, lipid production from SM and WP achieved 6.45 g/L and 6.13 g/L, respectively. β-galactosidase was responsible for lactose hydrolysis; sucrase and α-galactosidase both contributed to the efficient hydrolysis of raffinose and stachyose in a cooperation manner. CONCLUSIONS This is a new way to produce lipids from raw materials containing galactose-based carbohydrates. This finding revealed the significance of sucrase in the direct hydrolysis of galactose-based carbohydrates in raw materials for the first time and facilitated the understanding of the efficient utilization of galactose-based carbohydrates to manufacture lipid or other chemicals in bioprocess.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yan Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jing-Run Ye
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Wei Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
8
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|