1
|
El-Shora HM, El-Sayyad GS, El-Zawawy NA, Abd El-Rheem MA, Metwally MA, Metwally SA. Stability of immobilized L-arginine deiminase from Penicillium chrysogenum and evaluation of its anticancer activity. Sci Rep 2024; 14:27216. [PMID: 39516512 PMCID: PMC11549461 DOI: 10.1038/s41598-024-77795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of the present work was to immobilize L-arginine deiminase on suitable supports such as chitosan, alginate, and silica gel to study its stability. Additionally, the study aims to investigate the anticancer effects of the free purified enzyme on hepatocellular carcinoma (Hep-G2) and breast cancer (MCF-7) cell lines. L-arginine deiminase (ADI: EC 3.5.3.6) was immobilized on chitosan, Ca-alginate, and silica gel, with immobilization efficiencies of 89.0%, 72.8%, and 66.5%, respectively. The optimal immobilization time for the highest efficiency was 4 h. Increasing the concentration of glutaraldehyde improved the immobilization efficiency of ADI on chitosan. The chitosan-immobilized ADI retained about 45% of its activity after 8 cycles. The optimal pH values were 6 for the free purified ADI and 7 for the chitosan-immobilized ADI. The optimal temperature increased from 40 °C for the free enzyme to 45 °C after immobilization. The activation energies for the free and chitosan-immobilized enzymes were 71.335 kJ/mol and 64.011 kJ/mol, respectively. The Km values for the free and chitosan-immobilized ADI were 0.76 mM and 0.77 mM, respectively, while the Vmax values were 80.0 U/mg protein for the free ADI and 71.4 U/mg protein for the chitosan-immobilized ADI. After 30 days of storage at 4 °C, the residual activities were 40% for the free purified ADI and 84% for the chitosan-immobilized ADI. At 25 °C, the residual activities were 10% for the free ADI and 75% for the chitosan-immobilized ADI. The chitosan-immobilized ADI exhibited significantly higher stability against proteases such as pepsin and trypsin compared to the free enzyme. The purified ADI also demonstrated enhanced potential anticancer effects and significant cytotoxicity against the Hep-G2 and MCF-7 tumor cell lines compared to doxorubicin. These findings suggest that purified ADI has potential as an anticancer agent, though further in-depth studies are required.
Collapse
Affiliation(s)
- Hamed M El-Shora
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed A Abd El-Rheem
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Metwally A Metwally
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sally A Metwally
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Zhang Y, Zhang T, Li M, Miao M. Rational design to improve the catalytic efficiency and stability of arginine deiminase. Int J Biol Macromol 2024; 269:132083. [PMID: 38705327 DOI: 10.1016/j.ijbiomac.2024.132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Arginine deiminase (ADI) has garnered significant interest because of its ability to objectively eradicate cancer cells and produce L-citrulline. To meet the production demands, this study focused on enhancing the enzyme activity and thermal stability of ADI. In this study, 24 ADI mutants were obtained through computer aid site-specific mutation in the ADI of Enterobacter faecalis. Notably, the specific enzyme activities of F44W, N163P, E220I, E220L, N318E, A336G, T340I, and N382F increased, reaching 1.33-2.53 times that of the original enzyme. This study confirmed that site-specific mutations are critical for optimizing enzyme function. Additionally, the F44W, N163P, E220I, T340I, and A336G mutants demonstrated good thermal stability. The optimal pH for mutant F44W increased to 8, whereas mutants E220I, I244V, A336G, T340I, and N328F maintained an optimal pH of 7.5. Conversely, the M109L, N163P, E220L, I244L, and N318E mutants shad an optimal pH of 7. This study revealed that mutant enzymes with increased activity were more likely to contain mutation sites situated near the four loops associated with catalytic residues, whereas mutations at the dimer junction sites had a higher tendency to enhance enzyme stability. These findings contribute to the development of ADI industrial applications and its modifications.
Collapse
Affiliation(s)
- Yijing Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Musa A, Ihmaid SK, Hughes DL, Said MA, Abulkhair HS, El-Ghorab AH, Abdelgawad MA, Shalaby K, Shaker ME, Alharbi KS, Alotaibi NH, Kays DL, Taylor LJ, Parambi DGT, Alzarea SI, Al-Karmalawy AA, Ahmed HEA, El-Agrody AM. The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations. J Biomol Struct Dyn 2023; 41:12411-12425. [PMID: 36661285 DOI: 10.1080/07391102.2023.2167000] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients. Pyranopyrazole and pyrazolone are privileged options for the development of anticancer agents. Inspired by this proven scientific fact, we report here the synthesis of two new series of suggested anticancer molecules incorporating both heterocycles together with their characterization by IR, 1H NMR, 13C NMR, 13C NMR-DEPT, and X-ray diffraction methods. An attempt to get the pyranopyrazole-gold complexes was conducted but unexpectedly yielded benzylidene-2,4-dihydro-3H-pyrazol-3-one instead. This unexpected result was confirmed by X-ray crystallographic analysis. All newly synthesized compounds were assessed for their anti-proliferative activity against two different human breast cancer cells, and the obtained results were compared with the reference drug Staurosporine. The target compounds revealed variable cytotoxicity with IC50 at a low micromolar range with superior selectivity indices. Target enzyme EGFR-TK and CDK-9 assays showed that compounds 22 and 23 effectively inhibited both biological targets with IC50 values of 0.143 and 0.121 µM, respectively. Molecular docking experiments and molecular dynamics simulation were also conducted to further rationalize the in vitro obtained results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Saleh K Ihmaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid, Jordon
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Musa A Said
- Chemistry Department, College of Sciences, Taibah University, Medina, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, Egypt
| | - Ahmed H El-Ghorab
- Department of Chemistry, College of Science, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Deborah L Kays
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Laurence J Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Wu JF, Wei XP, Li JY, Sun WX. Recombinant Expression and Characterization of an Arginine Deiminase from Pseudomonas sp. LJY. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Dhankhar R, Kawatra A, Gupta V, Mohanty A, Gulati P. In silico and in vitro analysis of arginine deiminase from Pseudomonas furukawaii as a potential anticancer enzyme. 3 Biotech 2022; 12:220. [PMID: 35971334 PMCID: PMC9374873 DOI: 10.1007/s13205-022-03292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Vatika Gupta
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
6
|
Trivedi S, Husain I, Sharma A. Purification and characterization of phytase from
Bacillus subtilis
P6: Evaluation for probiotic potential for possible application in animal feed. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shraddha Trivedi
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
| | - Islam Husain
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
- National Center for Natural Products Research School of Pharmacy The University of Mississippi University Oxford Mississippi USA
| | - Anjana Sharma
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
| |
Collapse
|
7
|
Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. PLANTS 2020; 9:plants9121784. [PMID: 33339267 PMCID: PMC7766900 DOI: 10.3390/plants9121784] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.
Collapse
|