1
|
Ma C, Liang Z, Wang Y, Luo H, Yang X, Yao B, Tu T. p-Hydroxycinnamic Acids: Advancements in Synthetic Biology, Emerging Regulatory Targets in Gut Microbiota Interactions, and Implications for Animal Health. J Nutr 2025; 155:1041-1056. [PMID: 39900184 DOI: 10.1016/j.tjnut.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
p-hydroxycinnamic acids (p-HCAs), a class of natural phenolic acid compounds extracted from plant resources and widely distributed, feature a C6-C3 phenylpropanoid structure. Their antioxidant, anti-inflammatory, and antibacterial activities have shown great potential for applications in food and animal feed. The interactions between p-HCAs and the gut microbiota, as well as their subsequent effects on animal health, have increasingly attracted the attention of researchers. In the context of a greener and safer future, the progress and innovation in biosynthetic technology have occupied a central position in ensuring the safety of food and feed. This review emphasizes the complex mechanisms underlying the interactions between p-HCAs and the gut microbiota, providing a solid explanation for the remarkable bioactivities of p-HCAs and their subsequent impact on animal health. Furthermore, it explores the advancements in the synthetic biology of p-HCAs. This review could aid in a basis for better understanding the underlying interactions between p-HCAs and gut microbiota and animal health.
Collapse
Affiliation(s)
- Chunlai Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziqi Liang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
An H, Li G, Yang Z, Xiong M, Wang N, Cao X, Yu A. Denovo Production of Resveratrol by Engineered Rice Wine Strain Saccharomyces cerevisiae HJ08 and Its Application in Rice Wine Brewing. J Fungi (Basel) 2024; 10:513. [PMID: 39194839 DOI: 10.3390/jof10080513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Resveratrol is a plant-derived polyphenolic compound with numerous biological activities and health-promoting properties. Rice wine is a popular traditional alcoholic beverage made from fermented rice grains, and widely consumed in Asia. To develop resveratrol-enriched rice wine, a heterologous resveratrol biosynthesis pathway was established by integrating the 4-coumaroyl-CoA ligase (Pc4CL) and the stilbene synthase (VvSTS) from Petroselinum crispum and Vitis vinifera at the δ locus sites of industrial rice wine strains Saccharomyces cerevisiae HJ. The resulting S. cerevisiae HJ01 produced a level of 0.6 ± 0.01 mg/L resveratrol. Next, the resveratrol production was increased 16.25-fold through employing the fused protein Pc4CL::VvSTS with a rigidly linked peptide (TPTP, EAAAK). Then, the strains were further modified by removing feedback inhibition of tyrosine through point mutation of ARO4 and ARO7, which integrated at the rDNA region of strain HJ03, and generated strain HJ06, HJ07, and HJ08. Subsequently, the highest resveratrol titer (34.22 ± 3.62 mg/L) was obtained by optimizing fermentation time and precursor addition amount. Finally, resveratrol content of rice wine fermented with strain HJ08 was 2.04 ± 0.08 mg/L and 1.45 ± 0.06 mg/L with or without the addition of 400 mg/L tyrosine after 7 days fermentation.
Collapse
Affiliation(s)
- Huihui An
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guangpeng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhihan Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Na Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xitao Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, China
| |
Collapse
|
3
|
Yue M, Liu M, Gao S, Ren X, Zhou S, Rao Y, Zhou J. High-Level De Novo Production of (2 S)-Eriodictyol in Yarrowia Lipolytica by Metabolic Pathway and NADPH Regeneration Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4292-4300. [PMID: 38364826 DOI: 10.1021/acs.jafc.3c08861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
(2S)-Eriodictyol, a polyphenolic flavonoid, has found widespread applications in health supplements and food additives. However, the limited availability of plant-derived (2S)-eriodictyol cannot meet the market demand. Microbial production of (2S)-eriodictyol faces challenges, including the low catalytic efficiency of flavone 3'-hydroxylase/cytochrome P450 reductase (F3'H/CPR), insufficient precursor supplementation, and inadequate NADPH regeneration. This study systematically engineered Yarrowia lipolytica for high-level (2S)-eriodictyol production. In doing this, the expression of F3'H/CPR was balanced, and the supply of precursors was enhanced by relieving feedback inhibition of the shikimate pathway, promoting fatty acid β-oxidation, and increasing the copy number of synthetic pathway genes. These strategies, combined with NADPH regeneration, achieved an (2S)-eriodictyol titer of 423.6 mg/L. Finally, in fed-batch fermentation, a remarkable 6.8 g/L (2S)-eriodictyol was obtained, representing the highest de novo microbial titer reported to date and paving the way for industrial production.
Collapse
Affiliation(s)
- Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Mejía-Manzano LA, Ortiz-Alcaráz CI, Parra Daza LE, Suarez Medina L, Vargas-Cortez T, Fernández-Niño M, González Barrios AF, González-Valdez J. Saccharomyces cerevisiae biofactory to produce naringenin using a systems biology approach and a bicistronic vector expression strategy in flavonoid production. Microbiol Spectr 2024; 12:e0337423. [PMID: 38088543 PMCID: PMC10871697 DOI: 10.1128/spectrum.03374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.
Collapse
Affiliation(s)
| | | | - Laura E. Parra Daza
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Lina Suarez Medina
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Teresa Vargas-Cortez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Miguel Fernández-Niño
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Andrés Fernando González Barrios
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|