1
|
Hou R, Zhang Q, Wu W, Ma Y, Zhang R, Liu M, Chen J, Wen W, Zhang J, Peng Z. Acid Resistance Engineering of Endoglucanase for the Degradation of Wine Lees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26316-26327. [PMID: 39545837 DOI: 10.1021/acs.jafc.4c08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Wine lees is a low value biomass resource rich in cellulose, with great potential for producing organic fertilizers and chemicals. However, the high acidity of wine lees limits the catalytic efficiency of the conversion tool endoglucanase. Here, we expressed endoglucanase tCel5A from Trichoderma reesei in Pichia pastoris, and the combination of promoter AOX1 and signal peptide SUC2 resulted in a highly active expression of 4632.81 U/mg. Subsequently, the catalytic center design and surface charge modification strategy resulted in mutants T88H/W255H and S45D/T55D/T59D exhibiting catalytic activity twice and three times higher than WT at pH 3.0, respectively. Finally, when the solid-liquid ratio was 1:15 (w/v), the degradation rate of wine lees was nearly double that of WT. The degradation products contained a variety of industrial and pharmaceutical raw components, including the antioxidant and anticonvulsant isopiperolein B. This study accelerates the green and sustainable management of wine lees.
Collapse
Affiliation(s)
- Ruiyang Hou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qianli Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenmiao Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaping Ma
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Rongya Zhang
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Minchang Liu
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wu Wen
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
2
|
Wang Y, Li S, Ning C, Yang R, Wu Y, Cheng X, Xu J, Wang Y, Liu F, Zhang Y, Hu S, Xiao Y, Li Z, Zhou Z. The outer membrane protein, OMP71, of Riemerella anatipestifer, mediates adhesion and virulence by binding to CD46 in ducks. Vet Res 2024; 55:138. [PMID: 39407352 PMCID: PMC11481396 DOI: 10.1186/s13567-024-01393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The Riemerella anatipestifer bacterium is known to cause infectious serositis in ducklings. Moreover, its adherence to the host's respiratory mucosa is a critical step in pathogenesis. Membrane cofactor protein (MCP; CD46) is a complement regulatory factor on the surface of eukaryotic cell membranes. Bacteria have been found to bind to this protein on host cells. Outer membrane proteins (OMPs) are necessary for adhesion, colonisation, and pathogenicity of Gram-negative bacteria; however, the mechanism by which R. anatipestifer adheres to duck cells remains unclear. In this study, pull-down assays and LC-MS/MS identified eleven OMPs interacting with duck CD46 (dCD46), with OMP71 exhibiting the strongest binding. The ability of an omp71 gene deletion strain to bind dCD46 is weaker than that of the wild-type strain, suggesting that this interaction is important. Further evidence of this interaction was obtained by synthesising OMP71 using an Escherichia coli recombinant protein expression system. Adhesion and invasion assays and protein and antibody blocking assays confirmed that OMP71 promoted the R. anatipestifer YM strain (RA-YM) adhesion to duck embryo fibroblasts (DEFs) by binding to CD46. Tests of the pathogenicity of a Δomp71 mutant strain of RA-YM on ducks compared to the wild-type parent supported the hypothesis that OMP71 was a key virulence factor of RA-YM. In summary, the finding that R. anatipestifer exploits CD46 to bind to host cells via OMP71 increases our understanding of the molecular mechanism of R. anatipestifer invasion. The finding suggests potential targets for preventing and treating diseases related to R. anatipestifer infection.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Congran Ning
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jike Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Tian Y, Zhang H, Ge L, Wang Z, Wang P, Xiong S, Wang X, Hu Y. Toll-like Receptor Expression in Pelodiscus sinensis Reveals Differential Responses after Aeromonas hydrophila Infection. Genes (Basel) 2024; 15:1230. [PMID: 39336821 PMCID: PMC11431187 DOI: 10.3390/genes15091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Toll-like receptor (TLR), as an important pattern recognition receptor, is a bridge between non-specific immunity and specific immunity, and plays a vital role in the disease resistance of aquatic animals. However, the function of TLR in Pelodiscus sinensis is still unclear. Methods and Results: The sequence characteristics and homology of three TLRs (PsTLR2, PsTLR3 and PsTLR5) were determined in this investigation. Their annotation and orthologies were supported by phylogenetic analysis, functional domain prediction, and sequence similarity analysis. qPCR showed that the identified TLRs were expressed in all tissues, among the high expression of PsTLR5 in the brain and liver and the high expression of PsTLR2 and PsTLR3 in the liver. PsTLR2 mRNA expression increased 6.7-fold in the liver 12 h after Aeromonas hydrophila infection, while the mRNA expression of PsTLR3 was down-regulated by 0.29 times in liver and 0.31 times in spleen. The mRNA expression of PsTLR5 was significantly up-regulated in four immune tissues, and it was up-regulated by 122.8 times in the spleen after 72 h infection. Finally, the recombinant proteins of extracellular LRR domains of these three TLRs were obtained by prokaryotic expression technology, and the binding tests were performed to discover their ability of binding pathogenic microorganisms. Microbial binding test showed that rPsTLR2, rPsTLR3 and rPsTLR5 can combine A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus agalactiae and Candida albicans, while rPsTLR3 can bind A. hydrophila, E. tarda, V. parahaemolyticus and C. albicans. Conclusions: Our findings suggested that TLRs may be crucial to turtles' innate immune response against microbes.
Collapse
Affiliation(s)
- Yu Tian
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Hui Zhang
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Lingrui Ge
- Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Zi’ao Wang
- Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Pei Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Shuting Xiong
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Xiaoqing Wang
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Yazhou Hu
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| |
Collapse
|
4
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
5
|
Enhanced Thermostability of D-Psicose 3-Epimerase from Clostridium bolteae through Rational Design and Engineering of New Disulfide Bridges. Int J Mol Sci 2021; 22:ijms221810007. [PMID: 34576170 PMCID: PMC8464696 DOI: 10.3390/ijms221810007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
D-psicose 3-epimerase (DPEase) catalyzes the isomerization of D-fructose to D-psicose (aka D-allulose, a low-calorie sweetener), but its industrial application has been restricted by the poor thermostability of the naturally available enzymes. Computational rational design of disulfide bridges was used to select potential sites in the protein structure of DPEase from Clostridium bolteae to engineer new disulfide bridges. Three mutants were engineered successfully with new disulfide bridges in different locations, increasing their optimum catalytic temperature from 55 to 65 °C, greatly improving their thermal stability and extending their half-lives (t1/2) at 55 °C from 0.37 h to 4−4.5 h, thereby greatly enhancing their potential for industrial application. Molecular dynamics simulation and spatial configuration analysis revealed that introduction of a disulfide bridge modified the protein hydrogen–bond network, rigidified both the local and overall structures of the mutants and decreased the entropy of unfolded protein, thereby enhancing the thermostability of DPEase.
Collapse
|
6
|
Fan G, Liu P, Chang X, Yin H, Cheng L, Teng C, Gong Y, Li X. Isolation and Identification of a High-Yield Ethyl Caproate-Producing Yeast From Daqu and Optimization of Its Fermentation. Front Microbiol 2021; 12:663744. [PMID: 34135875 PMCID: PMC8200637 DOI: 10.3389/fmicb.2021.663744] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Baijiu is an important fermented product in China. A yeast named YX3307 that is capable of producing a large amount of ethyl caproate (EC) was isolated from Daqu, a crude fermentation starter for Baijiu. This yeast was identified as Clavispora lusitaniae on the basis of its morphological properties, physiological and biochemical characteristics, and 26S rDNA sequence. Single-factor experiments were conducted to obtain the optimum fermentation conditions for EC production by YX3307. The highest EC yield (62.0 mg/L) from YX3307 was obtained with the following culture conditions: inoculum size 7.5% (v/v), seed cell age 30 h, sorghum hydrolysate medium (SHM) with a sugar content of 10 Brix and an initial pH of 6.0; incubation at 28°C with shaking at 180 rpm for 32 h; addition of 10% (v/v) anhydrous ethanol and 0.04% (v/v) caproic acid at 32 and 40 h, respectively, static culture at 20°C until 72 h. YX3307 synthesized more EC than ethyl acetate, ethyl lactate, ethyl butyrate, and ethyl octanoate. An intracellular enzyme or cell membrane enzyme was responsible for EC synthesis. YX3307 can produce many flavor compounds that are important for high-quality Baijiu. Thus, it has potential applications in improving the flavor and quality of Baijiu.
Collapse
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Pengxiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xu Chang
- Institute of Brewing and Bioenergy, Angel Yeast Co., Ltd., Hubei, China
| | - Huan Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Liujie Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yi Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|