1
|
Gaete-Loyola J, Olivares F, Saavedra GM, Zúñiga T, Mora R, Ríos I, Valdovinos G, Barrera M, Almeida AM, Prieto H. Artificial Sweet Cherry miRNA 396 Promotes Early Flowering in Vernalization-Dependent Arabidopsis Edi-0 Ecotype. PLANTS (BASEL, SWITZERLAND) 2025; 14:899. [PMID: 40265858 PMCID: PMC11945767 DOI: 10.3390/plants14060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The flowering and fruiting of sweet cherry (Prunus avium L.) depend on precise synchronization with seasonal events. During harsh autumn and winter conditions, floral buds enter dormancy to protect and prepare for the productive season. Dormancy release occurs after exposure to genotype-specific chilling temperatures, an event in which epigenetic reprogramming triggers further metabolic and gene expression activation. Similarly, several Arabidopsis ecotypes require chilling (vernalization) to transition from vegetative to floral states. At vernalization's end, the decrease in the repressor complex formed by SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS C (FLC) allows FLOWERING LOCUS T (FT) to induce flowering. However, this alone does not fully explain the process. MicroRNAs (miRNAs) play a crucial role in gene regulation during plant development and environmental interactions, and miR396's role during flower development and vernalization has been described in some plant species, although not for sweet cherry dormancy. We used 'Regina', a high-chill sweet cherry variety, to identify candidate small RNA molecules throughout dormancy, resulting in the detection of miR396. The transcript expression levels of the putative miRNA target genes were evaluated through quantitative PCR analyses of dormant buds. Additionally, an artificial sweet cherry miR396 was used to transform Arabidopsis Edi-0, a vernalization-requiring ecotype. Ectopic expression of this artificial molecule partially mirrored the effect on target genes observed in dormant buds and, more importantly, led to vernalization-independent flowering. Artificial miR396 expression also resulted in decreased FLC and increased SVP and FT transcript levels. These results could pave the way for future studies on the involvement of miR396 in the regulation of dormancy and flowering, with potential applications in improving crop resilience and productivity.
Collapse
Affiliation(s)
- José Gaete-Loyola
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (J.G.-L.); (G.M.S.)
| | - Felipe Olivares
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Gabriela M. Saavedra
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (J.G.-L.); (G.M.S.)
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Huechuraba, Santiago 8580745, Chile
| | - Tiare Zúñiga
- Natural Sciences, Mathematics, and Environment Faculty, Metropolitan Technological University (UTEM), Macul, Santiago 8330526, Chile;
| | - Roxana Mora
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Ignacio Ríos
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Gonzalo Valdovinos
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Marion Barrera
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (J.G.-L.); (G.M.S.)
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Santiago 8580745, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| |
Collapse
|
2
|
Ćuković KB, Todorović SI, Savić JM, Bogdanović MD. Transcriptome and Gene Expression Analysis Revealed CeNA1: A Potential New Marker for Somatic Embryogenesis in Common Centaury ( Centaurium erythraea Rafn.). Int J Mol Sci 2024; 25:13531. [PMID: 39769294 PMCID: PMC11677695 DOI: 10.3390/ijms252413531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Centaurium erythraea Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity. Although SE is the most common method of centaury regeneration, the genes involved in this have not yet been identified. The aim of this study was to identify the differentially expressed genes (DEGs) during key stages of SE and organogenesis using transcriptome data, with a focus on novel SE-related genes. The transcriptomic analysis revealed a total of 4040 DEGs during SE and 12,708 during organogenesis. Gene Ontology (GO) annotation showed that the highest number of SE-related genes was involved in defense responses. The expression of fifteen selected SE-related candidate genes was assessed by RT-qPCR across nine centaury developmental stages, including embryogenic tissues. Notably, a newly reported transcript, named CeNA1, was specifically activated during embryogenic callus (ec) induction, making it a potential novel marker for early SE. These findings provide, for the first time, insight into SE-related transcriptional patterns, representing a step closer to uncovering the molecular basis of centaury's developmental plasticity.
Collapse
Affiliation(s)
- Katarina B. Ćuković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.I.T.); (J.M.S.); (M.D.B.)
| | | | | | | |
Collapse
|
3
|
Lopos LC, Panthi U, Kovalchuk I, Bilichak A. Modulation of Plant MicroRNA Expression: Its Potential Usability in Wheat ( Triticum aestivum L.) Improvement. Curr Genomics 2023; 24:197-206. [PMID: 38169773 PMCID: PMC10758129 DOI: 10.2174/0113892029264886231016050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024] Open
Abstract
Wheat, a crucial crop for the pursuit of food security, is faced with a plateauing yield projected to fall short of meeting the demands of the exponentially increasing human population. To raise global wheat productivity levels, strong efforts must be made to overcome the problems of (1) climate change-induced heat and drought stress and (2) the genotype-dependent amenability of wheat to tissue culture, which limits the success of recovering genetically engineered plants, especially in elite cultivars. Unfortunately, the mainstream approach of genetically engineering plant protein-coding genes may not be effective in solving these problems as it is difficult to map, annotate, functionally verify, and modulate all existing homeologs and paralogs within wheat's large, complex, allohexaploid genome. Additionally, the quantitative, multi-genic nature of most agronomically important traits furthers the complications faced by this approach. miRNAs are small, noncoding RNAs (sncRNAs) that repress gene expression at the post-transcriptional level, regulating various aspects of plant growth and development. They are gaining popularity as alternative targets of genetic engineering efforts for crop improvement due to their (1) highly conserved nature, which facilitates reasonable prediction of their gene targets and phenotypic effects under different expression levels, and (2) the capacity to target multiple genes simultaneously, making them suitable for enhancing complex and multigenic agronomic traits. In this mini-review, we will discuss the biogenesis, manipulation, and potential applications of plant miRNAs in improving wheat's yield, somatic embryogenesis, thermotolerance, and drought-tolerance in response to the problems of plateauing yield, genotype-dependent amenability to tissue culture, and susceptibility to climate change-induced heat and drought stress. © His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food, 2023.
Collapse
Affiliation(s)
- Louie Cris Lopos
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Urbashi Panthi
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Andriy Bilichak
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
4
|
Xu W, Fan H, Pei X, Hua X, Xu T, He Q. mRNA-Seq and miRNA-Seq Analyses Provide Insights into the Mechanism of Pinellia ternata Bulbil Initiation Induced by Phytohormones. Genes (Basel) 2023; 14:1727. [PMID: 37761867 PMCID: PMC10531394 DOI: 10.3390/genes14091727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pinellia ternata (Thunb.) Breit (abbreviated as P. ternata) is a plant with an important medicinal value whose yield is restricted by many factors, such as low reproductive efficiency and continuous cropping obstacles. As an essential breeding material for P. ternata growth and production, the bulbils have significant advantages such as a high survival rate and short breeding cycles. However, the location effect, influencing factors, and molecular mechanism of bulbil occurrence and formation have not been fully explored. In this study, exogenously applied phytohormones were used to induce in vitro petiole of P. ternata to produce bulbil structure. Transcriptome sequencing of mRNA and miRNA were performed in the induced petiole (TCp) and the induced bulbil (TCb). Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for the identification of key genes and pathways involved in bulbil development. A total of 58,019 differentially expressed genes (DEGs) were identified. The GO and KEGG analysis indicated that DEGs were mainly enriched in plant hormone signal transduction and the starch and sucrose metabolism pathway. The expression profiles of miR167a, miR171a, and miR156a during bulbil induction were verified by qRT-PCR, indicating that these three miRNAs and their target genes may be involved in the process of bulbil induction and play an important role. However, further molecular biological experiments are required to confirm the functions of the identified bulbil development-related miRNAs and targets.
Collapse
Affiliation(s)
- Wenxin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Haoyu Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Xiaomin Pei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Xuejun Hua
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Tao Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Qiuling He
- Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
5
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|
6
|
Long Y, Yang Y, Pan G, Shen Y. New Insights Into Tissue Culture Plant-Regeneration Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:926752. [PMID: 35845646 PMCID: PMC9280033 DOI: 10.3389/fpls.2022.926752] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 05/08/2023]
Abstract
Plant regeneration occurs when plants repair or replace damaged structures based on the totipotency and pluripotency of their cells. Tissue culture is one of the most widely used regenerative technologies. Recently, a series of breakthroughs were made in the study of plant regeneration. This review summarizes two regenerative pathways in tissue culture: somatic embryogenesis and de novo organogenesis. Furthermore, we review the environmental factors influencing plant regeneration from explant sources, basal culture medium, plant growth regulators, and light/dark treatment. Additionally, we analyse the molecular mechanisms underlying two pathways. This knowledge will promote an understanding of the fundamental principles of plant regeneration from precursor cells and lay a solid foundation for applying plant micropropagation and genetic modification.
Collapse
Affiliation(s)
- Yun Long
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yun Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
8
|
Cai J, Wu Z, Hao Y, Liu Y, Song Z, Chen W, Li X, Zhu X. Small RNAs, Degradome, and Transcriptome Sequencing Provide Insights into Papaya Fruit Ripening Regulated by 1-MCP. Foods 2021; 10:1643. [PMID: 34359513 PMCID: PMC8303378 DOI: 10.3390/foods10071643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
As an inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) can delay the ripening of papaya. However, improper 1-MCP treatment will cause a rubbery texture in papaya. Understanding of the underlying mechanism is still lacking. In the present work, a comparative sRNA analysis was conducted after different 1-MCP treatments and identified a total of 213 miRNAs, of which 44 were known miRNAs and 169 were novel miRNAs in papaya. Comprehensive functional enrichment analysis indicated that plant hormone signal pathways play an important role in fruit ripening. Through the comparative analysis of sRNAs and transcriptome sequencing, a total of 11 miRNAs and 12 target genes were associated with the ethylene and auxin signaling pathways. A total of 1741 target genes of miRNAs were identified by degradome sequencing, and nine miRNAs and eight miRNAs were differentially expressed under the ethylene and auxin signaling pathways, respectively. The network regulation diagram of miRNAs and target genes during fruit ripening was drawn. The expression of 11 miRNAs and 12 target genes was verified by RT-qPCR. The target gene verification showed that cpa-miR390a and cpa-miR396 target CpARF19-like and CpERF RAP2-12-like, respectively, affecting the ethylene and auxin signaling pathways and, therefore, papaya ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.W.); (Y.H.); (Y.L.); (Z.S.); (W.C.); (X.L.)
| |
Collapse
|
9
|
Qin Z, Li J, Zhang Y, Xiao Y, Zhang X, Zhong L, Liu H, Chen B. Genome-wide identification of microRNAs involved in the somatic embryogenesis of Eucalyptus. G3-GENES GENOMES GENETICS 2021; 11:6163290. [PMID: 33693674 PMCID: PMC8049409 DOI: 10.1093/g3journal/jkab070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (18-24 nt) and function in many biological processes in plants. Although Eucalyptus trees are widely planted across the world, our understanding of the miRNA regulation in the somatic embryogenesis (SE) of Eucalyptus is still poor. Here we reported, for the first time, the miRNA profiles of differentiated and dedifferentiated tissues of two Eucalyptus species and identified miRNAs involved in SE of Eucalyptus. Stem and tissue culture-induced callus were obtained from the subculture seedlings of E. camaldulensis and E. grandis x urophylla and were used as differentiated and dedifferentiated samples, respectively. Small RNA sequencing generated 304.2 million clean reads for the Eucalyptus samples (n = 3) and identified 888 miRNA precursors (197 known and 691 novel) for Eucalyptus. These miRNAs were mainly distributed in chromosomes Chr03, Chr05, and Chr08 and can produce 46 miRNA clusters. Then, we identified 327 and 343 differentially expressed miRNAs (DEmiRs) in the dedifferentiation process of E. camaldulensis and E. grandis x urophylla, respectively. DEmiRs shared by the two Eucalyptus species might be involved in the development of embryonic callus, such as MIR156, MIR159, MIR160, MIR164, MIR166, MIR169, MIR171, MIR399, and MIR482. Notably, we identified 81 upregulated and 67 downregulated miRNAs specific to E. camaldulensis, which might be associated with the high embryogenic potential. Target prediction and functional analysis showed that they might be involved in longevity regulating and plant hormone signal transduction pathways. Further, using the gene expression profiles, we observed the negative regulation of miRNA-target pairs, such as MIR160~ARF18, MIR396~GRF6, MIR166~ATHB15/HD-ZIP, and MIR156/MIR157~SPL1. Interestingly, transcription factors such as WRKY, MYB, GAMYB, TCP4, and PIL1 were found to be regulated by the DEmiRs. The genes encoding PIL1 and RPS21C, regulated by upregulated miRNAs (e.g., egd-N-miR63-5p, egd-N-miR63-5p, and MIR169,) were downregulated exclusively in the dedifferentiation of E. camaldulensis. This is the first time to study the miRNA regulation in the dedifferentiation process of Eucalyptus and it will provide a valuable resource for future studies. More importantly, it will improve our understanding of miRNA regulation during the somatic embryogenesis of Eucalyptus and benefit the Eucalyptus breeding program.
Collapse
Affiliation(s)
- Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| |
Collapse
|
10
|
do Nascimento AMM, Polesi LG, Back FP, Steiner N, Guerra MP, Castander-Olarieta A, Moncaleán P, Montalbán IA. The Chemical Environment at Maturation Stage in Pinus spp. Somatic Embryogenesis: Implications in the Polyamine Profile of Somatic Embryos and Morphological Characteristics of the Developed Plantlets. FRONTIERS IN PLANT SCIENCE 2021; 12:771464. [PMID: 34899795 PMCID: PMC8663641 DOI: 10.3389/fpls.2021.771464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Changes in the chemical environment at the maturation stage in Pinus spp. somatic embryogenesis will be a determinant factor in the conversion of somatic embryos to plantlets. Furthermore, the study of biochemical and morphological aspects of the somatic embryos could enable the improvement of somatic embryogenesis in Pinus spp. In the present work, the influence of different amino acid combinations, carbohydrate sources, and concentrations at the maturation stage of Pinus radiata D. Don and Pinus halepensis Mill. was analyzed. In P. radiata, the maturation medium supplemented with 175 mM of sucrose and an increase in the amino acid mixture (1,100 mgL-1 of L-glutamine, 1,050 mgL-1 of L-asparagine, 350 mgL-1 of L-arginine, and 35 mgL-1 of L-proline) promoted bigger embryos, with a larger stem diameter and an increase in the number of roots in the germinated somatic embryos, improving the acclimatization success of this species. In P. halepensis, the maturation medium supplemented with 175 mM of maltose improved the germination of somatic embryos. The increase in the amount of amino acids in the maturation medium increased the levels of putrescine in the germinated somatic embryos of P. halepensis. We detected significant differences in the amounts of polyamines between somatic plantlets of P. radiata and P. halepensis; putrescine was less abundant in both species. For the first time, in P. radiata and P. halepensis somatic embryogenesis, we detected the presence of cadaverine, and its concentration changed according to the species.
Collapse
Affiliation(s)
| | - Luiza Giacomolli Polesi
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Franklin Panato Back
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Neusa Steiner
- Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Paloma Moncaleán
- Neiker-BRTA, Centro de Arkaute, Campus Agroalimentario de Arkaute, Arkaute, Spain
- *Correspondence: Paloma Moncaleán,
| | - Itziar Aurora Montalbán
- Neiker-BRTA, Centro de Arkaute, Campus Agroalimentario de Arkaute, Arkaute, Spain
- Itziar Aurora Montalbán,
| |
Collapse
|