1
|
Morca AF, Coşkan S, Öncü F, Akbaş B, Santosa AI, Yeşil S, Çelik A. Genetic Diversity and Phylogenetic Analysis of Watermelon Mosaic Virus in Türkiye: Insights into Emerging and Classic Populations. Curr Microbiol 2025; 82:298. [PMID: 40397168 DOI: 10.1007/s00284-025-04269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Watermelon mosaic virus (WMV, genus Potyvirus) is a significant pathogen affecting cucurbit production in the Western Black Sea and Central Anatolia regions of Türkiye, with limited knowledge of its genetic diversity hindering molecular control strategies. In this study, 19 complete coat protein (CP) gene sequences from WMV isolates collected from four cucurbit species were analyzed using RT-PCR, MEGA11 for phylogenetics, and DnaSP v6.12.03 for population genetics. The phylogenetic analysis, including 48 global isolates, classified eight Turkish isolates into the "emerging" (EM) group, 11 into the "classic" (G1) group, and identified a novel minor phylogroup. While a recombination signal was detected in isolate KP164988, none was observed in the Turkish isolates. Genetic diversity analysis showed that the G1 group was less divergent than the EM group, with all populations under strong purifying selection (ω = 0.022-0.243) and displaying recent expansion, likely due to variations in newly reported isolates. The results emphasize the genetic separation between EM and G1 groups and reveal frequent gene flow between Turkish and global populations. This comprehensive survey provides valuable insights into the genetic structure and diversity of WMV in Türkiye, supporting other reports on minor phylogroups within the virus populations.
Collapse
Affiliation(s)
- Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv, 06172, Yenimahalle, Ankara, Türkiye.
| | - Sevgi Coşkan
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv, 06172, Yenimahalle, Ankara, Türkiye
| | - Faruk Öncü
- Department of Combating Forest Pests, General Directorate of Forestry, Beştepe Mah, 06560, Yenimahalle, Ankara, Türkiye
| | - Birol Akbaş
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv, 06172, Yenimahalle, Ankara, Türkiye
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, 55281, Sleman, Yogyakarta, Indonesia
| | - Serkan Yeşil
- Department of Plant Protection, Faculty of Agriculture, Selçuk University, 42075, Konya, Türkiye
| | - Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant ˙Izzet Baysal University, 14030, Bolu, Türkiye.
| |
Collapse
|
2
|
López-Martín M, Montero-Pau J, Ylla G, Gómez-Guillamón ML, Picó B, Pérez-de-Castro A. Insights into the early transcriptomic response against watermelon mosaic virus in melon. BMC PLANT BIOLOGY 2024; 24:58. [PMID: 38245701 PMCID: PMC10799517 DOI: 10.1186/s12870-024-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described. Nevertheless, the transcriptomic response that might infer the resistance to this potyvirus has not been explored. RESULTS We have performed a comparative transcriptomic analysis using mock and WMV-inoculated plants of the susceptible cultivar "Bola de oro" (BO) and a resistant RIL (Recombinant inbred line) derived from the initial cross between "TGR-1551" and BO. In total, 616 genes were identified as differentially expressed and the weighted gene co-expression network analysis (WGCNA) detected 19 gene clusters (GCs), of which 7 were differentially expressed for the genotype x treatment interaction term. SNPs with a predicted high impact on the protein function were detected within the coding regions of most of the detected DEGs. Moreover, 3 and 16 DEGs were detected within the QTL regions previously described in chromosomes 11 and 5, respectively. In addition to these two specific genomic regions, we also observde large transcriptomic changes from genes spread across the genome in the resistant plants in response to the virus infection. This early response against WMV implied genes involved in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway or ubiquitin mediated proteolysis, in detriment to the photosynthetic and basal metabolites pathways. Moreover, the gene MELO3C021395, which coded a mediator of RNA polymerase II transcription subunit 33A (MED33A), has been proposed as the candidate gene located on chromosome 11 conferring resistance to WMV. CONCLUSIONS The comparative transcriptomic analysis presented here showed that, even though the resistance to WMV in TGR-1551 has a recessive nature, it triggers an active defense response at a transcriptomic level, which involves broad-spectrum resistance mechanisms. Thus, this study represents a step forward on our understanding of the mechanisms underlaying WMV resistance in melon. In addition, it sheds light into a broader topic on the mechanisms of recessive resistances.
Collapse
Affiliation(s)
- María López-Martín
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Javier Montero-Pau
- Instituto Cavanilles de biodiversidad y la biología evolutiva (ICBIBE), Universidad de Valencia, C/ del Catedrátic José Beltrán Martínez, 2, 46980, Paterna, Spain
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - María Luisa Gómez-Guillamón
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, CSIC-UMA, Avda. Dr. Wienberg s/n, 29750, Málaga, Spain
| | - Belén Picó
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Ana Pérez-de-Castro
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain.
| |
Collapse
|
3
|
Rabadán MP, Juárez M, Gómez P. Long-Term Monitoring of Aphid-Transmitted Viruses in Melon and Zucchini Crops: Genetic Diversity and Population Structure of Cucurbit Aphid-Borne Yellows Virus and Watermelon Mosaic Virus. PHYTOPATHOLOGY 2023; 113:1761-1772. [PMID: 37014099 DOI: 10.1094/phyto-10-22-0394-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Understanding the emergence and prevalence of viral diseases in crops requires the systematic epidemiological monitoring of viruses, as well as the analysis of how ecological and evolutionary processes combine to shape viral population dynamics. Here, we extensively monitored the occurrence of six aphid-transmitted viruses in melon and zucchini crops in Spain for 10 consecutive cropping seasons between 2011 and 2020. The most prevalent viruses were cucurbit aphid-borne yellows virus (CABYV) and watermelon mosaic virus (WMV), found in 31 and 26% of samples with yellowing and mosaic symptoms. Other viruses, such as zucchini yellow mosaic virus, cucumber mosaic virus, Moroccan watermelon mosaic virus, and papaya ring spot virus, were detected less frequently (<3%) and mostly in mixed infections. Notably, our statistical analysis showed a significant association between CABYV and WMV in melon and zucchini hosts, suggesting that mixed infections might be influencing the evolutionary epidemiology of these viral diseases. We then carried out a comprehensive genetic characterization of the full-length genome sequences from CABYV and WMV isolates by using the Pacific Biosciences single-molecule real-time (PacBio) high-throughput technology to assess the genetic variation and structure of their populations. Our results showed that the CABYV population displayed seven codons under positive selection, and although most isolates clustered in the Mediterranean clade, a subsequent analysis of molecular variance revealed a significant, fine-scale temporal structure, which was in part explained by the level of the variance between isolates from single and mixed infections. In contrast, the WMV population genetic analysis showed that most of the isolates grouped into the Emergent clade, with no genetic differentiation and under purifying selection. These results underlie the epidemiological relevance of mixed infections for CABYV and provide a link between genetic diversity and CABYV dynamics at the whole-genome level.
Collapse
Affiliation(s)
- M P Rabadán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100, Murcia, Spain
| | - M Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, Ctra de Beniel km 3,2 03312 Orihuela, Alicante, Spain
| | - P Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100, Murcia, Spain
| |
Collapse
|
4
|
Pouraziz P, Yousefi M, Santosa AI, Koolivand D. Genetic Variation between Asian and Mediterranean Populations of Cucurbit Aphid-Borne Yellows Virus. Viruses 2023; 15:1714. [PMID: 37632056 PMCID: PMC10457933 DOI: 10.3390/v15081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Viral symptoms, such as yellowing, leaf deformation, mottling, vein clearing, and reduced yield, were observed in cucurbits in Iran. This study aimed to detect the main suspected causal agent, cucurbit aphid-borne yellows virus (CABYV), in Iran and analyze the genetic diversity among isolates. Two hundred samples were collected from different growing areas between 2019 and 2022. PCR amplification was performed on the P3 and P4 genes. The sequences of 18 Iranian isolates were obtained and deposited in GenBank. Recombination, phylogenetic, and population genetics studies were then carried out for the complete genome and all ORFs sequences, together with other isolates in GenBank. The nucleotide identities of the overlapped ORF3/4 sequences of Iranian isolates were 94.8 to 99.5% among themselves, and with other tested isolates ranging from 94.3 to 99.3%. Phylogenetic trees based on the complete genome and the overlapped ORF3/4 showed two major clades, namely Asian and Mediterranean, and the new isolates from Iran were positioned in both clades. The obtained results also suggest that all the genes and two clades of CABYV populations were under negative selection pressure. Furthermore, rare gene flow between these two clades (FST > 0.33) confirmed the high genetic separation among them.
Collapse
Affiliation(s)
- Parastoo Pouraziz
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38111, Iran (D.K.)
| | - Milad Yousefi
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38111, Iran (D.K.)
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38111, Iran (D.K.)
| |
Collapse
|
5
|
Li J, Wang T, Liu W, Yin D, Lai Z, Zhang G, Zhang K, Ji J, Yin S. A high-quality chromosome-level genome assembly of Pelteobagrus vachelli provides insights into its environmental adaptation and population history. Front Genet 2022; 13:1050192. [DOI: 10.3389/fgene.2022.1050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pelteobagrus vachelli is a freshwater fish with high economic value, but the lack of genome resources has severely restricted its industrial development and population conservation. Here, we constructed the first chromosome-level genome assembly of P. vachelli with a total length of approximately 662.13 Mb and a contig N50 was 14.02 Mb, and scaffolds covering 99.79% of the assembly were anchored to 26 chromosomes. Combining the comparative genome results and transcriptome data under environmental stress (high temperature, hypoxia and Edwardsiella. ictaluri infection), the MAPK signaling pathway, PI3K-Akt signaling pathway and apelin signaling pathway play an important role in environmental adaptation of P. vachelli, and these pathways were interconnected by the ErbB family and involved in cell proliferation, differentiation and apoptosis. Population evolution analysis showed that artificial interventions have affected wild populations of P. vachelli. This study provides a useful genomic information for the genetic breeding of P. vachelli, as well as references for further studies on fish biology and evolution.
Collapse
|