1
|
Zhao Y, Guo S, Li S, Ye E, Wang W, Wang T, Wen Y, Guo L. Ultrasonic-assisted extraction, anti-biofilm activity, and mechanism of action of Ku Shen ( Sophorae Flavescentis Radix) extracts against Vibrio parahaemolyticus. Front Microbiol 2024; 15:1379341. [PMID: 38596374 PMCID: PMC11003267 DOI: 10.3389/fmicb.2024.1379341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
The objective of this study is to optimize the ultrasonic-assisted extraction process of Ku Shen (Sophorae Flavescentis Radix) extracts (KSE) against Vibrio parahaemolyticus and explore their anti-biofilm activity and mechanism of action. The ultrasonic-assisted extraction process of KSE optimized by single factor experiment, Box-Behnken design and response surface methodology was as follows: 93% ethanol as solvent, liquid/material ratio of 30 mL/g, ultrasonic power of 500 W, extraction temperature of 80°C and time of 30 min. Under these conditions, the diameter of inhibition circle of KSE was 15.60 ± 0.17 mm, which had no significant difference with the predicted value. The yield of dried KSE is 32.32 ± 0.57% and the content of total flavonoids in KSE was 57.02 ± 5.54%. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of KSE against V. parahaemolyticus were 0.25 and 0.5 mg/mL, respectively. Crystal violet staining, Congo red plate, spectrophotometry, CCK-8 and scanning electron microscopy were used to investigate the activity and mechanism of action of KSE against V. parahaemolyticus biofilm. The results showed that the sub-MIC of KSE could significantly inhibit biofilm formation, reduce the synthesis of polysaccharide intercellular adhesin (PIA) and the secretion of extracellular DNA. In addition, the inhibition rate of biofilm formation and clearance rate of mature biofilm of 1.0 mg/mL KSE were 85.32 and 74.04%, and the reduction rate of metabolic activity of developing and mature biofilm were 77.98 and 74.46%, respectively. These results were confirmed by visual images obtained by scanning electron microscopy. Therefore, KSE has the potential to further isolate the anti-biofilm agent and evaluate it for the preservation process of aquatic products.
Collapse
Affiliation(s)
- Yanan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Siya Guo
- College of Kangda, Nanjing Medical University, Lianyungang, China
| | - Shuge Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Enjun Ye
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wenfang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tong Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Ying Wen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
2
|
Jiang T, Zhang B, Zhang H, Wei M, Su Y, Song T, Ye S, Zhu Y, Wu W. Purification and Properties of a Plasmin-like Marine Protease from Clamworm ( Perinereis aibuhitensis). Mar Drugs 2024; 22:68. [PMID: 38393039 PMCID: PMC10890283 DOI: 10.3390/md22020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Marine organisms are a rich source of enzymes that exhibit excellent biological activity and a wide range of applications. However, there has been limited research on the proteases found in marine mudflat organisms. Based on this background, the marine fibrinolytic enzyme FELP, which was isolated and purified from clamworm (Perinereis aibuhitensis), has exhibited excellent fibrinolytic activity. We demonstrated the FELP with a purification of 10.61-fold by precipitation with ammonium sulfate, ion-exchange chromatography, and gel-filtration chromatography. SDS-PAGE, fibrin plate method, and LC-MS/MS indicated that the molecular weight of FELP is 28.9 kDa and identified FELP as a fibrinolytic enzyme-like protease. FELP displayed the maximum fibrinolytic activity at pH 9 (407 ± 16 mm2) and 50 °C (724 ± 27 mm2) and had excellent stability at pH 7-11 (50%) or 30-60 °C (60%), respectively. The three-dimensional structure of some amino acid residues of FELP was predicted with the SWISS-MODEL. The fibrinolytic and fibrinogenolytic assays showed that the enzyme possessed direct fibrinolytic activity and indirect fibrinolysis via the activation of plasminogen; it could preferentially degrade Aα-chains of fibrinogen, followed by Bβ- and γ-chains. Overall, the fibrinolytic enzyme was successfully purified from Perinereis aibuhitensis, a marine Annelida (phylum), with favorable stability that has strong fibrinolysis activity in vitro. Therefore, FELP appears to be a potent fibrinolytic enzyme with an application that deserves further investigation.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Bing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| | - Haixing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Mingjun Wei
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Yue Su
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Tuo Song
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Shijia Ye
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Yuping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, Shanghai 200433, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
- East China Sea Marine Biological Resources Engineering Technology Center, Zhongke Road, Putuo District, Zhoushan 316104, China
| |
Collapse
|
3
|
Zhang Y, Lin M, Qin Y, Lu H, Xu X, Gao C, Liu Y, Luo W, Luo X. Anti-Vibrio potential of natural products from marine microorganisms. Eur J Med Chem 2023; 252:115330. [PMID: 37011553 DOI: 10.1016/j.ejmech.2023.115330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The emergence of drug-resistant Vibrio poses a serious threat to aquaculture and human health, thus there is an urgent need for the discovery of new related antibiotics. Given that marine microorganisms (MMs) are evidenced as important sources of antibacterial natural products (NPs), great attention has been gained to the exploration of potential anti-Vibrio agents from MMs. This review summarizes the occurrence, structural diversity, and biological activities of 214 anti-Vibrio NPs isolated from MMs (from 1999 to July 2022), including 108 new compounds. They were predominantly originated from marine fungi (63%) and bacteria (30%) with great structural diversity, including polyketides, nitrogenous compounds, terpenoids, and steroids, among which polyketides account for nearly half (51%) of them. This review will shed light on the development of MMs derived NPs as potential anti-Vibrio lead compounds with promising applications in agriculture and human health.
Collapse
|
4
|
Optimized Extraction, Identification and Anti-Biofilm Action of Wu Wei Zi ( Fructus Schisandrae Chinensis) Extracts against Vibrio parahaemolyticus. Molecules 2023; 28:molecules28052268. [PMID: 36903518 PMCID: PMC10005123 DOI: 10.3390/molecules28052268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The pathogenicity of foodborne Vibrio parahaemolyticus is a major concern for global public health. This study aimed to optimize the liquid-solid extraction of Wu Wei Zi extracts (WWZE) against Vibrio parahaemolyticus, identify its main components, and investigate the anti-biofilm action. The extraction conditions optimized by the single-factor test and response surface methodology were ethanol concentration of 69%, temperature at 91 °C, time of 143 min, and liquid-solid ratio of 20:1 mL/g. After high performance liquid chromatography (HPLC) analysis, it was found that the main active ingredients of WWZE were schisandrol A, schisandrol B, schisantherin A, schisanhenol, and schisandrin A-C. The minimum inhibitory concentration (MIC) of WWZE, schisantherin A, and schisandrol B measured by broth microdilution assay was 1.25, 0.625, and 1.25 mg/mL, respectively, while the MIC of the other five compounds was higher than 2.5 mg/mL, indicating that schisantherin A and schizandrol B were the main antibacterial components of WWZE. Crystal violet, Coomassie brilliant blue, Congo red plate, spectrophotometry, and Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effect of WWZE on the biofilm of V. parahaemolyticus. The results showed that WWZE could exert its dose-dependent potential to effectively inhibit the formation of V. parahaemolyticus biofilm and clear mature biofilm by significantly destroying the cell membrane integrity of V. parahaemolyticus, inhibiting the synthesis of intercellular polysaccharide adhesin (PIA), extracellular DNA secretion, and reducing the metabolic activity of biofilm. This study reported for the first time the favorable anti-biofilm effect of WWZE against V. parahaemolyticus, which provides a basis for deepening the application of WWZE in the preservation of aquatic products.
Collapse
|
5
|
Zheng H, Liu Y, Cai J, Zhang M, Wen Y, Guo L. The exploration of anti-Vibrio parahaemolyticus substances from Phellodendri Chinensis Cortex as a preservative for shrimp storage. Front Microbiol 2022; 13:1004262. [PMID: 36177459 PMCID: PMC9514719 DOI: 10.3389/fmicb.2022.1004262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to optimize the ultrasonic-assisted extraction of the anti-Vibrio parahaemolyticus substances of Phellodendri Chinensis Cortex (ASPC), identify their active substances, and investigate their application in shrimp storage. The ultrasonic-assisted extraction conditions of ASPC were optimized through a single-factor experiment combined with response surface methodology. The optimal parameters were the ethanol concentration of 81%, the ultrasonic power of 500 W, the temperature of 80°C, the extraction time of 23 min, and the liquid/solid ratio 25 ml/g. The antibacterial zone diameter of the obtained extract determined by agar well diffusion method was 15.56 ± 0.22 mm, which was not significantly different from the predicted value (15.92 mm). Berberine was identified as one of the main chemical components of ASPC through high-performance liquid chromatography combined with standard control. The minimum inhibitory concentrations of ASPC and berberine determined by the tube dilution method were 0.25 and 0.03 mg/ml, respectively. The application of ASPC in shrimp storage showed that it could effectively inhibit the proliferation of V. parahaemolyticus on shrimps. This report offers good prospects for the use of Phellodendri Chinensis Cortex as a potential preservative against V. parahaemolyticus in aquatic products.
Collapse
Affiliation(s)
- Huifang Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jing Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Miao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Ying Wen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Lei Guo,
| |
Collapse
|