1
|
Qiu F, Li W, Chen X, Du B, Li X, Sun B. Targeted microbial collaboration to enhance key flavor metabolites by inoculating Clostridium tyrobutyricum and Saccharomyces cerevisiae in the strong-flavor Baijiu simulated fermentation system. Food Res Int 2024; 190:114647. [PMID: 38945586 DOI: 10.1016/j.foodres.2024.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Ethyl hexanoate and ethyl butyrate are indispensable flavor metabolites in strong-flavor Baijiu (SFB), but batch production instability in fermenting grains can reduce the quality of distilled Baijiu. Biofortification of the fermentation process by designing a targeted microbial collaboration pattern is an effective method to stabilize the quality of Baijiu. In this study, we explored the metabolism under co-culture liquid fermentation with Clostridium tyrobutyricum DB041 and Saccharomyces cerevisiae YS219 and investigated the effects of inoculation with two functional microorganisms on physicochemical factors, flavor metabolites, and microbial communities in solid-state simulated fermentation of SFB for the first time. The headspace solid-phase microextraction-gas chromatography-mass spectrometry results showed that ethyl butyrate and ethyl hexanoate significantly increased in fermented grain. High-throughput sequencing analysis showed that Pediococcus, Lactobacillus, Weissella, Clostridium_sensu_stricto_12, and Saccharomyces emerged as the dominant microorganisms at the end of fermentation. Co-occurrence analysis showed that ethyl hexanoate and ethyl butyrate were significantly correlated (|r| > 0.5, P < 0.05) with a cluster of interactions dominated by lactic acid bacteria (Pediococcus, Lactobacillus, Weissella, and Lactococcus), which was driven by the functional C. tyrobutyricum and S. cerevisiae. Mantel test showed that moisture and reducing sugars were the main physicochemical factor affecting microbial collaboration (|r| > 0.7, P < 0.05). Taken together, the collaborative microbial pattern of inoculation with C. tyrobutyricum and S. cerevisiae showed positive results in enhancing typical flavor metabolites and the synergistic effects of microorganisms in SFB.
Collapse
Affiliation(s)
- Fanghang Qiu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Chen
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Dai M, Xu Y, Zhao L, Wu M, Ma H, Zhu L, Li W, Li X, Sun B. Caproicibacter sp. BJN0012, a potential new species isolated from cellar mud for caproic acid production from glucose. J Biotechnol 2024; 388:11-23. [PMID: 38614441 DOI: 10.1016/j.jbiotec.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties. Therefore, it is essential to identify and investigate these acid-producing microorganisms from cellar mud to ensure stable caproic acid synthesis. In this study, a unique strain was isolated from the cellar mud, exhibiting a 98.12 % similarity in its 16 S rRNA sequence and an average nucleotide identity of 79.57 % with the reference specie, together with the DNA-DNA hybridization of 23.20 % similarity, confirming the distinct species boundaries. The strain was able to produce 1.22 ± 0.55 g/L caproic acid from glucose. Through genome sequencing, annotation, and bioinformatics analysis, the complete pathway of caproic acid synthesis from glucose was elucidated, and the catalytic mechanism of the key thiolase for caproic acid synthesis was investigated. These findings provide useful fundamental data for revealing the metabolic properties of caproic acid-producing bacteria found in cellar mud.
Collapse
Affiliation(s)
- Mengqi Dai
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Huifeng Ma
- Hebei Fenglaiyi Wine Industry Co., Ltd, Xingtai, Hebei province 055550, China
| | - Lining Zhu
- Hebei Fenglaiyi Wine Industry Co., Ltd, Xingtai, Hebei province 055550, China
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China.
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
3
|
Zhang G, Xiao P, Xu Y, Li H, Li H, Sun J, Sun B. Isolation and Characterization of Yeast with Benzenemethanethiol Synthesis Ability Isolated from Baijiu Daqu. Foods 2023; 12:2464. [PMID: 37444202 DOI: 10.3390/foods12132464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Baijiu, a prevalent alcoholic beverage, boasts over 2000 aroma compounds, with sulfur-containing compounds being the most influential in shaping its flavor. Benzenemethanethiol, a distinctive odorant in baijiu, is known to enhance the holistic flavor profile of baijiu. Despite its importance, there is very little literature on the biotransformation mechanism of benzenemethanethiol. Thus, extensive research efforts have been made to elucidate the formation mechanism of this compound in order to improve baijiu production. In this study, 12 yeast strains capable of generating benzenemethanethiol were isolated from baijiu daqu, and the Saccharomyces cerevisiae strain J14 was selected for further investigation. The fermentation conditions were optimized, and it was found that the optimal conditions for producing benzenemethanethiol were at 28 °C for 24 h with a 4% (v/v) inoculum of 3.025 g/L L-cysteine. This is the first time that yeast has been shown to produce benzenemethanethiol isolated from the baijiu fermentation system. These findings also suggest that benzenemethanethiol can be metabolized by yeast using L-cysteine and benzaldehyde as precursor substrates.
Collapse
Affiliation(s)
- Guihu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Peng Xiao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Wu M, Xu Y, Dai M, Li W, Zhang C, Li X, Sun B. Butyriproducens baijiuensis BJN0003: a potential new member of the family Oscillospiraceae isolated from Chinese Baijiu. 3 Biotech 2023; 13:205. [PMID: 37223001 PMCID: PMC10200727 DOI: 10.1007/s13205-023-03624-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Acid-producing bacteria are one kind of crucial species for Baijiu fermentation. The strain BJN0003 with the ability of producing butyric acid was isolated from the cellar mud of Baijiu, and the 16S rRNA gene sequence similarity was 94.2% to its most closely related type species Caproicibacterium lactiferaments JNU-WLY1368T, less than the threshold value of 94.5% for distinguishing genera. Furthermore, the genome of BJN0003 showed a length of 2,458,513 bp and a DNA G + C content of 43.3% through high throughput sequence. BJN0003 exhibited whole-genome average nucleotide identity value of 68.9% to the most closely related species, while the whole-genome digital DNA-DNA hybridization value was only 23.1%, which were both below the delineation thresholds of species. These results indicated BJN0003 could represent a potential novel species of a new genus of the family Oscillospiraceae, and was proposed the name as Butyriproducens baijiuensis. In addition, gene annotation and metabolic analysis showed that BJN0003 harbored the metabolic pathway of converting glucose to butyric acid. The discovery of the new species provided bacterial resource for Baijiu production and the revealing of genetic characteristics would promote the investigation of acid synthesis during Baijiu manufacturing process. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03624-w.
Collapse
Affiliation(s)
- Mengqin Wu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Mengqi Dai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commerce, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| |
Collapse
|
5
|
Xu Y, Wu M, Zhao D, Zheng J, Dai M, Li X, Li W, Zhang C, Sun B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023; 12:foods12030644. [PMID: 36766173 PMCID: PMC9913964 DOI: 10.3390/foods12030644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The solid-state fermentation of Baijiu is complicated by the co-fermentation of many microorganisms. The instability of the composition and abundance of the microorganisms in the fermentation process leads to fluctuations of product quality, which is one of the bottleneck problems faced by the Strong-flavor Baijiu industry. In this study, we established a combination of functional microorganisms for the stable fermentation of the main flavor compounds of Baijiu, including medium and long-chain fatty acid ethyl esters such as hexanoic acid, ethyl ester; butanoic acid, ethyl ester; octanoic acid, ethyl ester; acetic acid, ethyl ester; 9,12-octadecadienoic acid, ethyl ester; and decanoic acid, ethyl ester in the fermented grains. Our study investigated the effects of microbial combinations on the fermentation from three aspects: microbial composition, microbial interactions, and microbial association with flavor compounds. The results showed that the added functional microorganisms (Lactobacillus, Clostridium, Caproiciproducens, Saccharomyces, and Aspergillus) became the dominant species in the fermentation system and formed positive interactions with other microorganisms, while the negative interactions between microorganisms were significantly reduced in the fermentation systems that contained both Daqu and functional microorganisms. The redundancy analysis showed that the functional microorganisms (Lactobacillus, Saccharomyces, Clostridium, Cloacibacterium, Chaenothecopsis, Anaerosporobacter, and Sporolactobacillus) showed strong positive correlations with the main flavor compounds (hexanoic acid, ethyl ester; lactic acid, ethyl ester; butanoic acid, ethyl ester; acetic acid, ethyl ester; and octanoic acid, ethyl ester). These results indicated that it was feasible to produce Baijiu with a functional microbial combination, and that this could promote stable Baijiu production.
Collapse
Affiliation(s)
- Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Mengqi Dai
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|