1
|
Jegatheeswaran S, Tan JH, Fraser AG, Hwang DK. Encapsulation of Caenorhabditis elegans in Water-in-Water Microdroplets to Study the Worm Viability: Alternative Avenue to Manipulate Microdroplet Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59037-59043. [PMID: 38063021 DOI: 10.1021/acsami.3c14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Due to the great biocompatibility of the aqueous two phase system (ATPS), biological cells have been widely encapsulated in ATPS microdroplets (diameter < 50 μm). However, the immobilization of relatively large multicellular organisms such as Caenorhabditis elegans in ATPS droplets remains challenging as the spontaneous generation of droplets greater than 200 μm is difficult without external perturbations. In this study, we utilize a microneedle-assisted coflow microfludic channel to passively form ATPS microdroplets larger than 200 μm and successfully entrap C. elegans in the microdroplets. We monitor the worm viability and its temporal stroke frequency up to 6 h. We study the effects of dextran (DEX)-to-polyethylene glycol (PEG) flow ratios and worm concentration on the droplet diameter, worm encapsulation efficiency, and the number of droplets containing individual worms. Larger ATPS microdroplets (>200 μm) form in the ranges of capillary number (Ca) between 0.020 to 0.20 and Weber number (We) between 10-5 and 10-3. An ATPS with the encapsulation ability and biocompatibility can offer an alternative immobilization tool for multicellular organisms to existing platforms such as water/oil droplets.
Collapse
Affiliation(s)
- Sinthuran Jegatheeswaran
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - June H Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Andrew G Fraser
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
2
|
Hu W, Wang C, Gao D, Liang Q. Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. J Appl Toxicol 2023; 43:32-46. [PMID: 35289422 DOI: 10.1002/jat.4320] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
The development of nanotechnology is becoming a major trend nowadays. Nanoparticles (NPs) have been widely used in fields including food, biomedicine, and cosmetics, endowing NPs more opportunities to enter the human body. It is well-known that the gut microbiome plays a key role in human health, and the exposure of intestines to NPs is unavoidable. Accordingly, the toxicity of NPs has attracted more attention than before. This review mainly highlights recent advances in the evaluation of NPs' toxicity in the gastrointestinal system from the existing cell-based experimental models, such as the original mono-culture models, co-culture models, three-dimensional (3D) culture models, and the models established on microfluidic chips, to those in vivo experiments, such as mice models, Caenorhabditis elegans models, zebrafish models, human volunteers, as well as computer-simulated toxicity models. Owing to these models, especially those more biomimetic models, the outcome of the toxicity of NPs acting in the gastrointestinal tract can get results closer to what happened inside the real human microenvironment.
Collapse
Affiliation(s)
- Wanting Hu
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Chenlong Wang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Zhang X, Sun J, Yuan X, Lu X, Sun X. Advances in C. elegans behavior research with microfluidic devices and its future prospects in the evaluation of exogenous pollutants. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Automated Platform for Long-Term Culture and High-Content Phenotyping of Single C. elegans Worms. Sci Rep 2019; 9:14340. [PMID: 31586133 PMCID: PMC6778082 DOI: 10.1038/s41598-019-50920-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023] Open
Abstract
The nematode Caenorhabditis elegans is a suitable model organism in drug screening. Traditionally worms are grown on agar plates, posing many challenges for long-term culture and phenotyping of animals under identical conditions. Microfluidics allows for 'personalized' phenotyping, as microfluidic chips permit collecting individual responses over worms' full life. Here, we present a multiplexed, high-throughput, high-resolution microfluidic approach to culture C. elegans from embryo to the adult stage at single animal resolution. We allocated single embryos to growth chambers, for observing the main embryonic and post-embryonic development stages and phenotypes, while exposing worms to up to 8 different well-controlled chemical conditions. Our approach allowed eliminating bacteria aggregation and biofilm formation-related clogging issues, which enabled us performing up to 80 hours of automated single worm culture studies. Our microfluidic platform is linked with an automated phenotyping code that registers organism-associated phenotypes at high-throughput. We validated our platform with a dose-response study of the anthelmintic drug tetramisole by studying its influence through the life cycle of the nematodes. In parallel, we could observe development effects and variations in single embryo and worm viability due to the bleaching procedure that is standardly used for harvesting the embryos from a worm culture agar plate.
Collapse
|
7
|
Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Worms on a Chip. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
9
|
Letizia MC, Cornaglia M, Trouillon R, Sorrentino V, Mouchiroud L, Bou Sleiman MS, Auwerx J, Gijs MAM. Microfluidics-enabled phenotyping of a whole population of C. elegans worms over their embryonic and post-embryonic development at single-organism resolution. MICROSYSTEMS & NANOENGINEERING 2018; 4:6. [PMID: 31057896 PMCID: PMC6220190 DOI: 10.1038/s41378-018-0003-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 05/17/2023]
Abstract
The organism Caenorhabditis elegans is a performant model system for studying human biological processes and diseases, but until now all phenome data are produced as population-averaged read-outs. Monitoring of individual responses to drug treatments would however be more informative. Here, a new strategy to track different phenotypic traits of individual C. elegans nematodes throughout their full life-cycle-i.e., embryonic and post-embryonic development, until adulthood onset, differently from life-span-is presented. In an automated fashion, single worms were synchronized, isolated, and cultured from egg to adulthood in a microfluidic device, where their identity was preserved during their whole development. Several phenotypes were monitored and quantified for each animal, resulting in high-content phenome data. Specifically, the method was validated by analyzing the response of C. elegans to doxycycline, an antibiotic fairly well-known to prolong the development and activate mitochondrial stress-response pathways in different species. Interestingly, the obtained extensive single-worm phenome not only confirmed the dramatic doxycycline effect on the worm developmental delay, but more importantly revealed subtle yet severe treatment-dependent phenotypes that are representative of minority subgroups and would have otherwise stayed hidden in an averaged dataset. Such heterogeneous response started during the embryonic development, which makes essential having a dedicated chip that allows including this early developmental stage in the drug assay. Our approach would therefore allow elucidating pharmaceutical or therapeutic responses that so far were still being overlooked.
Collapse
Affiliation(s)
- Maria Cristina Letizia
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Microsystems, Lausanne, Switzerland
| | - Matteo Cornaglia
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Microsystems, Lausanne, Switzerland
| | - Raphaël Trouillon
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Microsystems, Lausanne, Switzerland
| | - Vincenzo Sorrentino
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative Systems Physiology, Lausanne, Switzerland
| | - Laurent Mouchiroud
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative Systems Physiology, Lausanne, Switzerland
| | - Maroun S. Bou Sleiman
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative Systems Physiology, Lausanne, Switzerland
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative Systems Physiology, Lausanne, Switzerland
| | - Martin A. M. Gijs
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Microsystems, Lausanne, Switzerland
| |
Collapse
|
10
|
Advances of Microfluidic Technologies Applied in Bio-analytical Chemistry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
|
12
|
Uppaluri S, Brangwynne CP. A size threshold governs Caenorhabditis elegans developmental progression. Proc Biol Sci 2016; 282:20151283. [PMID: 26290076 DOI: 10.1098/rspb.2015.1283] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The growth of organisms from humans to bacteria is affected by environmental conditions. However, mechanisms governing growth and size control are not well understood, particularly in the context of changes in food availability in developing multicellular organisms. Here, we use a novel microfluidic platform to study the impact of diet on the growth and development of the nematode Caenorhabditis elegans. This device allows us to observe individual worms throughout larval development, quantify their growth as well as pinpoint the moulting transitions marking successive developmental stages. Under conditions of low food availability, worms grow very slowly, but do not moult until they have achieved a threshold size. The time spent in larval stages can be extended by over an order of magnitude, in agreement with a simple threshold size model. Thus, a critical worm size appears to trigger developmental progression, and may contribute to prolonged lifespan under dietary restriction.
Collapse
Affiliation(s)
- Sravanti Uppaluri
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Hwang H, Krajniak J, Matsunaga Y, Benian GM, Lu H. On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection. LAB ON A CHIP 2014; 14:3498-501. [PMID: 25056343 PMCID: PMC4148454 DOI: 10.1039/c4lc00697f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper describes a novel selective immobilization technique based on optical control of the sol-gel transition of thermoreversible Pluronic gel, which provides a simple, versatile, and biocompatible approach for high-resolution imaging and microinjection of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA.
| | | | | | | | | |
Collapse
|
14
|
Lee DH, Jang M, Park JK. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments. Biotechnol J 2014; 9:1233-40. [PMID: 25130499 DOI: 10.1002/biot.201400319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022]
Abstract
By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments.
Collapse
Affiliation(s)
- Do-Hyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Republic of Korea
| | | | | |
Collapse
|
15
|
Lee DH, Bae CY, Han JI, Park JK. In Situ Analysis of Heterogeneity in the Lipid Content of Single Green Microalgae in Alginate Hydrogel Microcapsules. Anal Chem 2013; 85:8749-56. [DOI: 10.1021/ac401836j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Do-Hyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Chae Yun Bae
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
- KAIST Institute
for the NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
16
|
Zhao X, Xu F, Tang L, Du W, Feng X, Liu BF. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo. Biosens Bioelectron 2013; 50:28-34. [PMID: 23831644 DOI: 10.1016/j.bios.2013.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Abstract
The propagation of intercellular calcium wave (ICW) is essential for coordinating cellular activities in multicellular organisms. However, the limitations of existing analytical methods hamper the studies of this biological process in live animals. In this paper, we demonstrated for the first time a novel microfluidic system with an open chamber for on-chip microinjection of C. elegans and investigation of ICW propagations in vivo. Worms were long-term immobilized on the side wall of the open chamber by suction. Using an external micro-manipulator, localized chemical stimulation was delivered to single intestinal cells of the immobilized worms by microinjection. The calcium dynamics in the intestinal cells expressing Ca(2+) indicator YC2.12 was simultaneously monitored by fluorescence imaging. As a result, thapsigargin injection induced ICW was observed in the intestinal cells of C. elegans. Further analysis of the ICW propagation was realized in the presence of heparin (an inhibitor for IP3 receptor), which allowed us to investigate the mechanism underlying intercellular calcium signaling. We expect this novel microfluidic platform to be a useful tool for studying cell-cell communication in multicellular organisms in vivo.
Collapse
Affiliation(s)
- Xingfu Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
17
|
Johari S, Nock V, Alkaisi MM, Wang W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. LAB ON A CHIP 2013; 13:1699-707. [PMID: 23511608 DOI: 10.1039/c3lc41403e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The understanding of force interplays between an organism and its environment is imperative in biological processes. Noticeably scarce from the study of C. elegans locomotion is the measurement of the nematode locomotion forces together with other important locomotive metrics. To bridge the current gap, we present the investigation of C. elegans muscular forces and locomotion metrics (speed, amplitude and wavelength) in one single assay. This assay uses polydimethylsiloxane (PDMS) micropillars as force sensing elements and, by variation of the pillar arrangement, introduces microstructure. To show the usefulness of the assay, twelve wild-type C. elegans sample worms were tested to obtain a total of 4665 data points. The experimental results lead to several key findings. These include: (1) maximum force is exerted when the pillar is in contact with the middle part of the worm body, (2) C. elegans locomotion forces are highly dependent on the structure of the surrounding environment, (3) the worms' undulation frequency and locomotion speed increases steadily from the narrow spacing of 'honeycomb' design to the wider spacing of 'lattice' pillar arrangement, and (4) C. elegans maintained their natural sinusoidal movement in the microstructured device, despite the existence of PDMS micropillars. The assay presented here focuses on wild type C. elegans, but the method can be easily applied to its mutants and other organisms. In addition, we also show that, by inverting the measurement device, worm locomotion behaviour can be studied in various substrate environments normally unconducive to flexible pillar fabrication. The quantitative measurements demonstrated in this work further improve the understanding of C. elegans mechanosensation and locomotion.
Collapse
Affiliation(s)
- Shazlina Johari
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|