1
|
Choi SJ, Lee MH, Liang Y, Lin EC, Khanthaphixay B, Leigh PJ, Hwang DS, Yoon JY. Machine learning classification of quorum sensing-induced bacterial aggregation using flow rate assays on paper chips toward bacterial species identification in potable water sources. Biosens Bioelectron 2025; 284:117563. [PMID: 40349566 DOI: 10.1016/j.bios.2025.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Preventing waterborne disease caused by bacteria is especially important in low-resource settings, where skilled personnel and laboratory equipment are scarce. This work reports a straightforward method for classifying bacterial species by monitoring the capillary flow rates on a multi-channel paper microfluidic chip, where quorum sensing (QS)-induced bacterial aggregation leads to measurable changes in flow rates, enabling species differentiation. It required no fluorescent molecules, microscope, particles, covalent conjugation, or surface immobilization. Five representative QS molecules and control were added to each bacterial sample, and their different extents of bacterial aggregation resulted in varied flow rates. Flow rates were collected for the duration of the flow to build the learning database, and the XGBoost machine learning algorithm predicted the accuracy for classifying ten bacterial species, including 7 gram-negative and 3 gram-positive species. Three different algorithms were developed for high, medium, and low bacterial concentration ranges, and the classification accuracies of all the algorithms exceeded 75.0 %. Using XGBoost and the previously established database, we tested bacteria in the field water samples and successfully predicted the dominant species. The technology developed in this study, using only QS molecules and a paper microfluidic chip, offers a simple system for detecting microorganisms in drinking water to help prevent waterborne diseases.
Collapse
Affiliation(s)
- Seung-Ju Choi
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Hee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
| | - Ethan C Lin
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Bradley Khanthaphixay
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Preston J Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon, 21983, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
2
|
Amado P, Dillinger C, Bahou C, Hashemi Gheinani A, Obrist D, Burkhard F, Ahmed D, Clavica F. Ultrasound-activated cilia for biofilm control in indwelling medical devices. Proc Natl Acad Sci U S A 2025; 122:e2418938122. [PMID: 40294275 PMCID: PMC12067268 DOI: 10.1073/pnas.2418938122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/02/2025] [Indexed: 04/30/2025] Open
Abstract
Biofilm formation and encrustation are major issues in indwelling medical devices, such as urinary stents and catheters, as they lead to blockages and infections. Currently, to limit these effects, frequent replacements of these devices are necessary, resulting in a significant reduction in patients' quality of life and an increase in healthcare costs. To address these challenges, by leveraging recent advancements in robotics and microfluidic technologies, we envision a self-cleaning system for indwelling medical devices equipped with bioinspired ultrasound-activated cilia. These cilia could be regularly activated transcutaneously by ultrasound, generating steady streaming, which can be used to remove encrusted deposits. In this study, we tested the hypothesis that the generated streaming can efficiently remove encrustations and biofilm from surfaces. To this end, we developed a microfluidic model featuring ultrasound-activated cilia on its wall. We showed that upon ultrasound activation, the cilia generated intense, steady streaming, reaching fluid velocity up to 10 mm/s. In all our experiments, this mechanism was able to efficiently clean typical encrustation (calcium carbonate and oxalate) and biofilm found in urological devices. The generated shear forces released, broke apart, and flushed away encrusted deposits. These findings suggest a broad potential for ultrasound-activated cilia in the maintenance of various medical devices. Compared to existing methods, our approach could reduce the need for invasive procedures, potentially lowering infection risks and enhancing patient comfort.
Collapse
Affiliation(s)
- Pedro Amado
- ARTORG Center for Biomedical Engineering Research, University of Bern, BernCH-3010, Switzerland
| | - Cornel Dillinger
- ARTORG Center for Biomedical Engineering Research, University of Bern, BernCH-3010, Switzerland
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, ZurichCH-8803, Switzerland
| | - Chaimae Bahou
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, BernCH-3010, Switzerland
| | - Ali Hashemi Gheinani
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, BernCH-3010, Switzerland
- Functional Urology Research Group, Department for Biomedical Research, University of Bern, BernCH-3008, Switzerland
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA02115
- Department of Surgery, Harvard Medical School, Boston, MA02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, BernCH-3010, Switzerland
| | - Fiona Burkhard
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, BernCH-3010, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, ZurichCH-8803, Switzerland
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, BernCH-3010, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, BernCH-3010, Switzerland
| |
Collapse
|
3
|
Pandit S, Li M, Chen Y, Rahimi S, Mokkapati V, Merlo A, Yurgens A, Mijakovic I. Graphene-Based Sensor for Detection of Bacterial Pathogens. SENSORS 2021; 21:s21238085. [PMID: 34884089 PMCID: PMC8662450 DOI: 10.3390/s21238085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
Microbial colonization to biomedical surfaces and biofilm formation is one of the key challenges in the medical field. Recalcitrant biofilms on such surfaces cause serious infections which are difficult to treat using antimicrobial agents, due to their complex structure. Early detection of microbial colonization and monitoring of biofilm growth could turn the tide by providing timely guidance for treatment or replacement of biomedical devices. Hence, there is a need for sensors, which could generate rapid signals upon bacterial colonization. In this study, we developed a simple prototype sensor based on pristine, non-functionalized graphene. The detection principle is a change in electrical resistance of graphene upon exposure to bacterial cells. Without functionalization with specific receptors, such sensors cannot be expected to be selective to certain bacteria. However, we demonstrated that two different bacterial species can be detected and differentiated by our sensor due to their different growth dynamics, adherence pattern, density of adhered bacteria and microcolonies formation. These distinct behaviors of tested bacteria depicted distinguishable pattern of resistance change, resistance versus gate voltage plot and hysteresis effect. This sensor is simple to fabricate, can easily be miniaturized, and can be effective in cases when precise identification of species is not needed.
Collapse
Affiliation(s)
- Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (S.P.); (Y.C.); (S.R.); (V.M.); (A.M.)
| | - Mengyue Li
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Göteborg, Sweden; (M.L.); (A.Y.)
| | - Yanyan Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (S.P.); (Y.C.); (S.R.); (V.M.); (A.M.)
| | - Shadi Rahimi
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (S.P.); (Y.C.); (S.R.); (V.M.); (A.M.)
| | - Vrss Mokkapati
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (S.P.); (Y.C.); (S.R.); (V.M.); (A.M.)
| | - Alessandra Merlo
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (S.P.); (Y.C.); (S.R.); (V.M.); (A.M.)
| | - August Yurgens
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Göteborg, Sweden; (M.L.); (A.Y.)
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (S.P.); (Y.C.); (S.R.); (V.M.); (A.M.)
- Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: ; Tel.: +46-(0)7-0982-8446
| |
Collapse
|
4
|
Pu H, Xu Y, Lin L, Sun D. Biofilm formation of
Pectobacterium
carotovorum
subsp.
carotovorum
on polypropylene surface during multiple cycles of vacuum cooling. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Yiwen Xu
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Lian Lin
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Da‐Wen Sun
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
- Food Refrigeration and Computerized Food Technology (FRCFT) Agriculture and Food Science Centre University College Dublin National University of Ireland Belfield, Dublin 4 Ireland
| |
Collapse
|
5
|
Wang L, Wu Y, Cai P, Huang Q. The attachment process and physiological properties of Escherichia coli O157:H7 on quartz. BMC Microbiol 2020; 20:355. [PMID: 33213384 PMCID: PMC7677791 DOI: 10.1186/s12866-020-02043-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background Manure application and sewage irrigation release many intestinal pathogens into the soil. After being introduced into the soil matrix, pathogens are commonly found to attach to soil minerals. Although the survival of mineral-associated Escherichia coli O157:H7 has been studied, a comprehensive understanding of the attachment process and physiological properties after attachment is still lacking. Results In this study, planktonic and attached Escherichia coli O157:H7 cells on quartz were investigated using RNA sequencing (RNA-seq) and the isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic method. Based on the transcriptomic and proteomic analyses and gene knockouts, functional two-component system pathways were required for efficient attachment; chemotaxis and the Rcs system were identified to play determinant roles in E. coli O157:H7 attachment on quartz. After attachment, the pyruvate catabolic pathway shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route. The survival rate of attached E. coli O157:H7 increased more than 10-fold under penicillin and vancomycin stress and doubled under alkaline pH and ferric iron stress. Conclusions These results contribute to the understanding of the roles of chemotaxis and the Rcs system in the attachment process of pathogens and indicate that the attachment of pathogens to minerals significantly elevates their resistance to antibiotics and environmental stress, which may pose a potential threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02043-8.
Collapse
Affiliation(s)
- Liliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Contrast of Real-Time Fluorescent PCR Methods for Detection of Escherichia coli O157:H7 and of Introducing an Internal Amplification Control. Microorganisms 2019; 7:microorganisms7080230. [PMID: 31370338 PMCID: PMC6723022 DOI: 10.3390/microorganisms7080230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 11/16/2022] Open
Abstract
Various constituents in food specimens can inhibit the PCR assay and lead to false-negative results. An internal amplification control was employed to monitor the presence of false-negative results in PCR amplification. In this study, the objectives were to compare the real-time PCR-based method by introducing a competitive internal amplification control (IAC) for the detection of Escherichia O157:H7 with respect to the specificity of the primers and probes, analytical sensitivity, and detection limits of contamination-simulated drinking water. Additionally, we optimized the real-time fluorescent PCR detection system for E. coli O157:H7. The specificity of primers and probes designed for the rfbE gene was evaluated using four kinds of bacterial strains, including E. coli O157:H7, Staphylococcus aureus, Salmonella and Listeria monocytogenes strains. The real time PCR assay unambiguously distinguished the E. coli O157:H7 strains after 16 cycles. Simultaneously, the lowest detection limit for E. coli O157:H7 in water samples introducing the IAC was 104 CFU/mL. The analytical sensitivity in water samples had no influence on the detection limit compared with that of pure cultures. The inclusion of an internal amplification control in the real-time PCR assay presented a positive IAC amplification signal in artificially simulated water samples. These results indicated that real-time fluorescent PCR combined with the IAC possessed good characteristics of stability, sensitivity, and specificity. Consequently, the adjusted methods have the potential to support the fast and sensitive detection of E. coli O157:H7, enabling accurate quantification and preventing false negative results in E. coli O157:H7 contaminated samples.
Collapse
|
7
|
Song HW, Yoo G, Bong JH, Kang MJ, Lee SS, Pyun JC. Surface display of sialyltransferase on the outer membrane of Escherichia coli and ClearColi. Enzyme Microb Technol 2019; 128:1-8. [PMID: 31186105 DOI: 10.1016/j.enzmictec.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
α2,3-Sialyltransferase from Pasteurella multocida (PmST1) is an enzyme that transfers a sialyl group of donor substrates to an acceptor substrate called N-acetyl-d-lactosamine (LacNAc). In this study PmST1 was expressed on the outer membrane of wildtype Escherichia coli (BL21) with lipopolysaccharide (LPS) and ClearColi with no LPS, and then the enzyme activity and expression level of PmST1 were compared. As the first step, the expression levels of PmST1 on the outer membranes of wildtype E. coli (BL21) and ClearColi were compared according to the IPTG induction time, and the absolute amount of surface-displayed PmST1 was calculated using densitometry of SDS-PAGE. As the next step, the influence of LPS on the PmST1 activity was estimated by analyzing Michaelis-Menten plot. The enzyme activity of PmST1 was analyzed by measuring the concentration of CMP, which was a by-product after the transfer of the sialyl group of donor compounds to the acceptor compounds. From a Michaelis-Menten plot, the enzyme activity of the surface-displayed PmST1 and the maximum rate (Vmax) of ClearColi were higher than those of wildtype E. coli (BL21). However, the KM value, which represented the concentration of substrate to reach half the maximum rate (Vmax), was similar for both enzymes. These results represented such a difference in enzyme activity was occurred from the interference of LPS on the mass transport of the donor and acceptor to PmST1 for the sialyl group transfer.
Collapse
Affiliation(s)
- Hyun-Woo Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea
| | - Gu Yoo
- School of Chemistry & Institute for Life Sciences, FNES, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seung Seo Lee
- School of Chemistry & Institute for Life Sciences, FNES, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Yu Z, Deslouches B, Walton WG, Redinbo MR, Di YP. Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS One 2018; 13:e0203621. [PMID: 30216370 PMCID: PMC6138395 DOI: 10.1371/journal.pone.0203621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
SPLUNC1 is a multifunctional protein of the airway with antimicrobial properties. We previously reported that it displayed antibiofilm activities against P. aeruginosa. The goal of this study was to determine whether (1) the antibiofilm property is broad (including S. aureus, another prevalent organism in cystic fibrosis); (2) the α4 region is responsible for such activity; and (3), if so, this motif could be structurally optimized as an antimicrobial peptide with enhanced activities. We used S. aureus biofilm-prevention assays to determine bacterial biomass in the presence of SPLUNC1 and SPLUNC1Δα4 recombinant proteins, or SPLUNC1-derived peptides (α4 and α4M1), using the well-established crystal-violet biofilm detection assay. The SPLUNC1Δα4 showed markedly reduced biofilm prevention compared to the parent protein. Surprisingly, the 30-residue long α4 motif alone demonstrated minimal biofilm prevention activities. However, structural optimization of the α4 motif resulted in a modified peptide (α4M1) with significantly enhanced antibiofilm properties against methicillin–sensitive (MSSA) and–resistant (MRSA) S. aureus, including six different clinical strains of MRSA and the well-known USA300. Hemolytic activity was undetectable at up to 100μM for the peptides. The data warrant further investigation of α4-derived AMPs to explore the potential application of antimicrobial peptides to combat bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William G. Walton
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Y. Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Park JM, Kim JI, Noh JY, Kim M, Kang MJ, Pyun JC. A highly sensitive carbapenemase assay using laser desorption/ionization mass spectrometry based on a parylene-matrix chip. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|