1
|
Sung JS, Jung J, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Cho S, Chu MK, Pyun JC. One-step ultra-rapid immunoassay of calcitonin gene-related peptide for migraine diagnosis. Biosens Bioelectron 2025; 270:116980. [PMID: 39608279 DOI: 10.1016/j.bios.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Migraine is known to be caused by calcitonin gene-related peptide (CGRP), prompting the need for quantitative analysis of CGRP for the clinical treatment of monoclonal antibodies targeting CGRP. Since CGRP is cleaved by proteolytic enzymes post-blood collection, rapid analysis methods are required. In this study, a one-step immunoassay for CGRP was developed using chemically mimicking peptides (mimotopes) with an analysis time of 32 min. Four clones from an Fv-antibody library were screened using two types of monoclonal antibodies against CGRP. Mimotopes for each monoclonal antibody were synthesized into peptides of 15 residues. The binding affinity (KD) was estimated, and the interaction with monoclonal antibodies was analyzed using docking simulations. Finally, a one-step immunoassay for CGRP was demonstrated using migraine patient samples (n = 57) and healthy volunteer controls (n = 18). The limit of detection (LOD) of one-step immunoassay based on Fremanezumab (mimotope F1) was estimated to be 8.8 pg/mL with the limit of quantification (LOQ) of 125.9 pg/mL. And, the one-step immunoassay based on Galcanezumab (mimotope G7) showed the LOD of 9.4 pg/mL and the LOQ of 84.7 pg/mL. The total analysis time was estimated to be approximately 32 min and the assay results were estimated to be statistically consistent with conventional CGRP assay.
Collapse
Affiliation(s)
- Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Universität Münster, Münster, Germany
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea; Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Republic of Korea
| | - Soomi Cho
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
3
|
Le TN, Descanzo MJN, Hsiao WWW, Soo PC, Peng WP, Chang HC. Fluorescent nanodiamond immunosensors for clinical diagnostics of tuberculosis. J Mater Chem B 2024; 12:3533-3542. [PMID: 38526339 DOI: 10.1039/d3tb03038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Fluorescent nanodiamonds (FNDs) are carbon nanoparticles containing a dense ensemble of nitrogen-vacancy defects as color centers. These centers have exceptional photostability and unique quantum properties, making them useful for ultrasensitive biosensing applications. This work employed FNDs conjugated with antibodies as magneto-optical immunosensors for tuberculosis (TB) diagnostics using competitive spin-enhanced lateral flow immunoassay (SELFIA). ESAT6 (6-kDa early secretory antigenic target) of Mycobacterium tuberculosis is a clinical marker of TB. We evaluated the assay's performance using the recombinant ESAT6 antigen and its antibodies noncovalently coated on FNDs. A detection limit of ∼0.02 ng mL-1 was achieved with the lateral flow membrane strip pre-structured with a narrow channel of 1 mm width. Adopting a cut-off value of 24.0 ng mm-1 for 100-nm FNDs on the strips, the method detected 49 out of 50 clinical samples with Mycobacterium tuberculosis complexes. In contrast, none of the assays for 10 clinical samples with non-tuberculous mycobacteria (NTM) isolates exhibited the presence of ESAT6. These results suggest that the SELFIA platform is applicable for TB detection and can differentiate TB from NTM infections, which also affect the human respiratory system. The FND-enabled immunosensing techniques are versatile and promising for early detection of TB and other diseases, opening a new avenue for biomedical applications of carbon-based nanomaterials.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
| | | | - Wesley W-W Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 97004, Taiwan
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Jung J, Sung JS, Bong JH, Kim TH, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. One-step immunoassay of SARS-CoV-2 using screened Fv-antibodies and switching peptides. Biosens Bioelectron 2024; 245:115834. [PMID: 37995624 DOI: 10.1016/j.bios.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The Fv-antibodies were correponded to VH region of immunoglobulin G, which were composed of three complementarity determining regions (CDRs) for the specific binding of antigens. In this work, the Fv-antibodies against SARS-CoV-2 spike protein (SP) were screened from an autodisplayed Fv-antibody library which was expressed on E. coli outer membrane, and the receptor binding domain (RBD) of SP was used as a screening probe. The screened target clones were analyzed to have quantitative binding properties to the RBD, and the Fv-antibodies from the screened target clones were expressed as soluble proteins. The binding affinity (KD) of expressed Fv-antibodies to the RBD was estimated to be 70-85 nM using SPR biosensor. The specific binding properties of Fv-antibodies were analyzed for pseudo-virus particles with SARS-CoV-2 SP on the Lenti-virus envelope, such as wild type (Wuhan-1) and variants (Delta, Omicron BA.2, Omicron BA.4/5) using a SPR biosensor. The detection of real SARS-CoV-2 (Wild type, Wuhan-1) based on a SPR biosensor was also presented using the Fv-antibodies with the binding constant (KD) of cycle threshold value (Ct) = 33.8-32.9 (2.19-4.08 copies/μL) and LOD of 0.67-0.83 copies/μL (Ct = 35.5-35.2). Finally, one-step immunoassay based on switching peptide was demonstrated for the detection of the real SARS-CoV-2 (Wuhan-1) without any washing step. The binding constant (KD) was estimated to be Ct = 35.2-33.9 (0.83-2.04 copies/μL), and LOD was estimated to be 0.14-0.47 copies/μL (Ct = 37.8-36.0). Considering the LOD of the conventional RT-PCR (Ct = 35), the LOD of the one-step immunoassay based on the switching peptide was determined to be feasible for the medical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, 02456, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster 48149, Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
Yin B, Tang P, Wang L, Xie W, Chen X, Wang Y, Weng T, Tian R, Zhou S, Wang Z, Wang D. An aptamer-assisted nanopore strategy with a salt gradient for direct protein sensing. J Mater Chem B 2023; 11:11064-11072. [PMID: 37966856 DOI: 10.1039/d3tb01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Peng Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Xiaohan Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Rong Tian
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Shuo Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| |
Collapse
|
6
|
Jung J, Bong JH, Sung JS, Park JH, Kim TH, Kwon S, Kang MJ, Jose J, Pyun JC. Immunoaffinity biosensors for the detection of SARS-CoV-1 using screened Fv-antibodies from an autodisplayed Fv-antibody library. Biosens Bioelectron 2023; 237:115439. [PMID: 37301177 PMCID: PMC10223632 DOI: 10.1016/j.bios.2023.115439] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-1) was demonstrated using screened Fv-antibodies for SPR biosensor and impedance spectrometry. The Fv-antibody library was first prepared on the outer membrane of E. coli using autodisplay technology and the Fv-variants (clones) with a specific affinity toward the SARS-CoV-1 spike protein (SP) were screened using magnetic beads immobilized with the SP. Upon screening the Fv-antibody library, two target Fv-variants (clones) with a specific binding affinity toward the SARS-CoV-1 SP were determined and the Fv-antibodies on two clones were named "Anti-SP1" (with CDR3 amino acid sequence: 1GRTTG5NDRPD11Y) and "Anti-SP2" (with CDR3 amino acid sequence: 1CLRQA5GTADD11V). The binding affinities of the two screened Fv-variants (clones) were analyzed using flow cytometry and the binding constants (KD) were estimated to be 80.5 ± 3.6 nM for Anti-SP1 and 45.6 ± 8.9 nM for Anti-SP2 (n = 3). In addition, the Fv-antibody including three CDR regions (CDR1, CDR2, and CDR3) and frame regions (FRs) between the CDR regions was expressed as a fusion protein (Mw. 40.6 kDa) with a green fluorescent protein (GFP) and the KD values of the expressed Fv-antibodies toward the SP estimated to be 15.3 ± 1.5 nM for Anti-SP1 (n = 3) and 16.3 ± 1.7 nM for Anti-SP2 (n = 3). Finally, the expressed Fv-antibodies screened against SARS-CoV-1 SP (Anti-SP1 and Anti-SP2) were applied for the detection of SARS-CoV-1. Consequently, the detection of SARS-CoV-1 was demonstrated to be feasible using the SPR biosensor and impedance spectrometry utilizing the immobilized Fv-antibodies against the SARS-CoV-1 SP.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster, 48149, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Nguyen HA, Lee NY. Copper: DNA extraction and solid phase detection agent for all-in-one molecular diagnostic device coupled with isothermal amplification. Biosens Bioelectron 2023; 229:115222. [PMID: 36989581 DOI: 10.1016/j.bios.2023.115222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
In this study, an all-in-one poly(methyl methacrylate) (PMMA) device integrating two novel techniques - DNA extraction employing a CuSO4/H2O2 system and DNA detection utilizing solid phase copper tape - coupled with loop-mediated isothermal amplification (LAMP) is developed for on-site pathogen detection. The CuSO4/H2O2 system, also known as Fenton-like reaction, is used to produce hydroxyl radicals, which can disrupt bacterial membranes via lipid peroxidation and release DNA at room temperature. The released DNA is subsequently amplified by LAMP reaction. The acidic environment resulting from the production of hydrogen ions in the presence of target DNA in the LAMP reaction can stimulate the color change on copper tape due to the corrosion, while the innate alkaline environment in a negative sample not containing target DNA cannot stimulate the corrosion. The fabricated PMMA device integrates all the functionalities necessary for molecular diagnostics such as DNA extraction, amplification, and detection, and a carbon paste-based heater is fabricated for LAMP reaction. Using the PMMA device, Enterococcus faecium was detected as low as 4.67 × 102 CFU/mL within 90 min. E. faecium spiked in milk was successfully detected using the all-in-one PMMA device. The equipment-free techniques for decentralized diagnostics and naked-eye readout of results coupled with the portable heater serves as a promising solution for point-of-care testing particularly in a resource-limited environment.
Collapse
Affiliation(s)
- Hanh An Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
8
|
Kim MJ, Song Z, Lee CK, Yun TG, Noh JY, Park MK, Yong D, Kang MJ, Pyun JC. Breathing-Driven Self-Powered Pyroelectric ZnO Integrated Face Mask for Bioprotection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200712. [PMID: 36385593 DOI: 10.1002/smll.202200712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Indexed: 06/16/2023]
Abstract
Rapid spread of infectious diseases is a global threat and has an adverse impact on human health, livelihood, and economic stability, as manifested in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Even though people wear a face mask as protective equipment, direct disinfection of the pathogens is barely feasible, which thereby urges the development of biocidal agents. Meanwhile, repetitive respiration generates temperature variation wherein the heat is regrettably wasted. Herein, a biocidal ZnO nanorod-modified paper (ZNR-paper) composite that is 1) integrated on a face mask, 2) harvests waste breathing-driven thermal energy, 3) facilitates the pyrocatalytic production of reactive oxygen species (ROS), and ultimately 4) exhibits antibacterial and antiviral performance is proposed. Furthermore, in situ generated compressive/tensile strain of the composite by being attached to a curved mask is investigated for high pyroelectricity. The anisotropic ZNR distortion in the bent composite is verified with changes in ZnO bond lengths and OZnO bond angles in a ZnO4 tetrahedron, resulting in an increased polarization state and possibly contributing to the following pyroelectricity. The enhanced pyroelectric behavior is demonstrated by efficient ROS production and notable bioprotection. This study exploring the pre-strain effect on the pyroelectricity of ZNR-paper might provide new insights into the piezo-/pyroelectric material-based applications.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang Kyu Lee
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Gyeong Yun
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joo-Yoon Noh
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Simple and rapid detection of ractopamine in pork with comparison of LSPR and LFIA sensors. J Food Drug Anal 2022; 30:590-602. [PMID: 36753367 PMCID: PMC9910298 DOI: 10.38212/2224-6614.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
This study developed a simple and rapid strategic technique to detect ractopamine (chemical growth-promoting agent) in pork. Two highly sensitive and specific gold nanoparticle-based portable sensors, i.e., localized surface plasmon resonance (LSPR) sensors, and lateral flow immunoassay (LFIA) strips were developed to detect veterinary drug residues in food products, that have detrimental effects on humans. Optimization studies were conducted on several sensor devices to improve sensitivity. Each sensor comprised functionalized gold nanoparticles conjugated with ractopamine antibodies. The LSPR sensor chip achieved excellent detection sensitivity = 1.19 fg/mL and was advantageous for quantitative analysis due to its wide dynamic range. On the other hand, LFIA strips provided visual test confirmation and achieved 2.27 ng/mL detection sensitivity, significantly less sensitive than LSPR. The complementary sensors help overcome each other's shortcomings with both the techniques offering ease of use, affordability and rapid diagnosis. Thus, these sensors can be applied on-site for routine screening of harmful drug residues in pork meat. They also provide useful direction for advanced technologies to enhance assay performance for detecting various other food drug contaminants.
Collapse
|
10
|
Wei-Wen Hsiao W, Sharma N, Le TN, Cheng YY, Lee CC, Vo DT, Hui YY, Chang HC, Chiang WH. Fluorescent nanodiamond-based spin-enhanced lateral flow immunoassay for detection of SARS-CoV-2 nucleocapsid protein and spike protein from different variants. Anal Chim Acta 2022; 1230:340389. [PMID: 36192062 PMCID: PMC9472599 DOI: 10.1016/j.aca.2022.340389] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 viruses, responsible for the COVID-19 pandemic, continues to evolve into new mutations, which poses a significant threat to public health. Current testing methods have some limitations, such as long turnaround times, high costs, and professional laboratory requirements. In this report, the novel Spin-Enhanced Lateral Flow Immunoassay (SELFIA) platform and fluorescent nanodiamond (FND) reporter were utilized for the rapid detection of SARS-CoV-2 nucleocapsid and spike antigens from different variants, including wild-type (Wuhan-1), Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529). The SARS-CoV-2 antibodies were conjugated with FND via nonspecific binding, enabling the detection of SARS-CoV-2 antigens via both direct and competitive SELFIA format. Direct SELFIA was performed by directly adding the SARS-CoV-2 antibodies-conjugated FND on the antigens-immobilized nitrocellulose (NC) membrane. Conversely, the SARS-CoV-2 antigen-containing sample was first incubated with the antibodies-conjugated FND, and then dropped on the antigen-immobilized NC membrane to carry out the competitive SELFIA. The results suggested that S44F anti-S IgG antibody can be efficiently used for the detection of wild-type, Alpha, Delta, and Omicron variants spike antigens. Findings were comparable in direct SELFIA, competitive SELFIA, and ELISA. A detection limit of 1.94, 0.77, 1.14, 1.91, and 1.68 ng/mL can be achieved for SARS-CoV-2 N protein, wild-type, Alpha, Delta, and Omicron S proteins, respectively, via competitive SELFIA assay. These results suggest that a direct SELFIA assay can be used for antibody/antigen pair screening in diagnosis development, while the competitive SELFIA assay can serve as an accurate quantitative diagnostic tool. The simplicity and rapidity of the SELFIA platform were demonstrated, which can be leveraged in the detection of other infectious diseases in the near future.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Yuan Cheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Duc-Thang Vo
- College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yuen Yung Hui
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
11
|
Kim HR, Bong JH, Kim TH, Shin SS, Kang MJ, Shim WB, Lee DY, Son DH, Pyun JC. One-Step Homogeneous Immunoassay for the Detection of Influenza Virus Using Switching Peptide and Graphene Quencher. BIOCHIP JOURNAL 2022; 16:334-341. [PMID: 35909466 PMCID: PMC9326414 DOI: 10.1007/s13206-022-00076-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
One-step homogeneous immunoassay was developed for detecting influenza viruses A and B (Inf-A and Inf-B) using the switching peptide H2. As the fluorescence-labeled switching peptide dissociated from the binding pocket of detection antibodies, the fluorescence signal could be directly generated by the binding of Inf-A and Inf-B without washing (i.e., one-step immunoassay). For the one-step homogeneous immunoassay with detection antibodies in solution, graphene was labeled with the antibodies as a fluorescence quencher. To test the feasibility of the homogeneous one-step immunoassay, the stability of the antibody complex with the switching peptide was evaluated under different pH and salt conditions. The one-step homogeneous immunoassay with switching peptide was conducted using influenza virus antigens in phosphate-buffered saline and real samples with inactivated Inf-A and Inf-B spiked in serum. Finally, the one-step homogeneous immunoassay results were compared with those of commercially available lateral flow immunoassays.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Seung-Shick Shin
- OPTOLANE Technologies Inc, 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494 Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju, Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc, 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494 Republic of Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| |
Collapse
|
12
|
Kim HR, Bong JH, Kim TH, Choi KH, Shin SS, Kang MJ, Shim WB, Lee DY, Pyun JC. Homogeneous One-Step Immunoassay Based on Switching Peptides for Detection of the Influenza Virus. Anal Chem 2022; 94:9627-9635. [PMID: 35762898 DOI: 10.1021/acs.analchem.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, a homogeneous one-step immunoassay based on switching peptides is presented for the detection of influenza viruses A and B (Inf-A and Inf-B, respectively). The one-step immunoassay represents an immunoassay method that does not involve any washing steps, only treatment of the sample. In this method, fluorescence-labeled switching peptides quantitatively dissociate from the antigen-binding site of immunoglobulin G (IgG). In particular, the one-step immunoassay based on soluble detection antibodies with switching peptides is called a homogeneous one-step immunoassay. The immunoassay developed uses switching peptides labeled with two types of fluorescence dyes (FAM and TAMRA) and detection antibodies labeled with two types of fluorescence quenchers (TQ2 for FAM and TQ3 for TAMRA). The optimal switching peptides for the detection of Inf-A and Inf-B have been selected as L1-peptide and H2-peptide. The interactions between the four kinds of switching peptides and IgG have been analyzed using computational docking simulation and SPR biosensor. The location of labeling for the fluorescence quenchers has been determined based on the distance between the fluorescence dyes of the switching peptides and the fluorescence quenchers, calculated on the basis of the efficiency of fluorescence quenching, using the Förster equation. To demonstrate the feasibility of the one-step immunoassay, binding constants (KD) have been calculated for detection antibodies against Inf-A and Inf-B with target antigens (Inf-A and Inf-B) and switching peptides (L1- and H2-peptides), using an isotherm model. The immunoassay has been demonstrated to be feasible using antigens as well as real samples of Inf-A and Inf-B with a critical cycle number (Ct). The immunoassay has also been compared to other commercially available rapid test kits for Inf-A and Inf-B and found to be far more sensitive for detection of Inf-A and Inf-B over the entire detection range.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Seung-Shick Shin
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Noh JY, Kim MJ, Park JM, Yun TG, Kang MJ, Pyun JC. Laser desorption/ionization mass spectrometry of L-thyroxine (T4) using combi-matrix of α-cyano-4-hydroxycinnamic acid (CHCA) and graphene. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAn optimal combi-matrix for MALDI-TOF mass spectrometry was presented for the analysis of L-thyroxine (T4) in human serum. For the selection of the optimal combi-matrix, several kinds of combi-matrices were prepared by mixing the conventional organic matrix of CHCA with nanomaterials, such as graphene, carbon nanotubes, nanoparticles of Pt and TiO2. In order to select the optimal combi-matrix, the absorption at the wavelength of laser radiation (337 nm) for the ionization of sample was estimated using UV–Vis spectrometry. And, the heat absorption properties of these combi-matrices were also analyzed using differential scanning calorimetry (DSC), such as onset temperature and fusion enthalpy. In the case of the combi-matrix of CHCA and graphene, the onset temperature and fusion enthalpy were observed to be lower than those of CHCA, which represented the enhanced transfer of heat to the analyte in comparison with CHCA. From the analysis of optical and thermal properties, the combi-matrix of CHCA and graphene was selected to be an optimal combination for the transfer of laser energy during MALDI-TOF mass spectrometry. The feasibility of the combi-matrix composed of CHCA and graphene was demonstrated for the analysis of T4 molecules using MALDI-TOF mass spectrometry. The combi-matrix of CHCA and graphene was estimated to have an improved limit of detection and a wider detection range in comparison with other kinds of combi-matrices. Finally, the MALDI-TOF MS results of T4 analysis using combi-matrix were statistically compared with those of the conventional immunoassay.
Collapse
|
14
|
Capacitive biosensor based on vertically paired electrodes for the detection of SARS-CoV-2. Biosens Bioelectron 2022; 202:113975. [PMID: 35042131 PMCID: PMC8741629 DOI: 10.1016/j.bios.2022.113975] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
Vertically paired electrodes (VPEs) with multiple electrode pairs were developed for the enhancement of capacitive measurements by optimizing the electrode gap and number of electrode pairs. The electrode was fabricated using a conductive polymer layer of PEDOT:PSS instead of Ag and Pt metal electrodes to increase the VPE fabrication yield because the PEDOT:PSS layer could be effectively etched using a reactive dry etching process. In this study, sensitivity enhancement was realized by decreasing the electrode gap and increasing the number of VPE electrode pairs. Such an increase in sensitivity according to the electrode gap and the number of electrode pairs was estimated using a model analyte for an immunoassay. Additionally, a computer simulation was performed using VPEs with different electrode gaps and numbers of VPE electrode pairs. Finally, VPEs with multiple electrode pairs were applied for SARS-CoV-2 nucleoprotein (NP) detection. The capacitive biosensor based on the VPE with immobilized anti-SARS-CoV-2 NP was applied for the specific detection of SARS-CoV-2 in viral cultures. Using viral cultures of SARS-CoV-2, SARS-CoV, MERS-CoV, and CoV-strain 229E, the limit of detection (LOD) was estimated to satisfy the cutoff value (dilution factor of 1/800) for the medical diagnosis of COVID-19, and the assay results from the capacitive biosensor were compared with commercial rapid kit based on a lateral flow immunoassay.
Collapse
|
15
|
Sung JS, Bong JH, Lee SJ, Jung J, Kang MJ, Lee M, Shim WB, Jose J, Pyun JC. One-step immunoassay for food allergens based on screened mimotopes from autodisplayed F V-antibody library. Biosens Bioelectron 2022; 202:113976. [PMID: 35042130 DOI: 10.1016/j.bios.2022.113976] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
One-step immunoassay detects a target analyte simply by mixing a sample with a reagent solution without any washing steps. Herein, we present a one-step immunoassay that uses a peptide mimicking a target analyte (mimotope). The key idea of this strategy is that the mimotopes are screened from an autodisplayed FV-antibody library using monoclonal antibodies against target analytes. The monoclonal antibodies are bound to fluorescence-labeled mimotopes, which are quantitatively released into the solution when the target analytes are bound to the monoclonal antibodies. Thus, the target analyte is detected without any washing steps. For the mimotope screening, an FV-antibody library was exhibited on the outer membrane of E. coli with a diversity of >106 clones/library using autodisplay technology. The targeted clones were screened from the autodisplayed FV-antibody library using magnetic beads with immobilized monoclonal antibodies against food allergens. The analysis of binding properties of a control strain with mutant FV -antibodies composed of only CDR1 and CDR2 demonstrated that the CDR3 regions of the screened FV-antibodies showed binding affinity to food allergens. The CDR3 regions were synthesized into peptides as mimotopes for the corresponding food allergens (mackerel, peanuts, and pig fat). One-step immunoassays for food allergens were demonstrated using mimotopes against mackerel, peanut, and pig fat without any washing steps in solution without immobilization of antibodies to a solid support.
Collapse
Affiliation(s)
- Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Soo Jeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
16
|
Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta 2022; 1189:338907. [PMID: 34815045 DOI: 10.1016/j.aca.2021.338907] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. BIOCHIP JOURNAL 2022; 16:376-396. [PMID: 35968255 PMCID: PMC9363872 DOI: 10.1007/s13206-022-00078-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has had significant economic and social impacts on billions of people worldwide since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in November 2019. Although polymerase chain reaction (PCR)-based technology serves as a robust test to detect SARS-CoV-2 in patients with COVID-19, there is a high demand for cost-effective, rapid, comfortable, and accurate point-of-care diagnostic tests in medical facilities. This review introduces the SARS-CoV-2 viral structure and diagnostic biomarkers derived from viral components. A comprehensive introduction of a paper-based diagnostic platform, including detection mechanisms for various target biomarkers and a COVID-19 commercial kit is presented. Intrinsic limitations related to the poor performance of currently developed paper-based devices and unresolved issues are discussed. Furthermore, we provide insight into novel paper-based diagnostic platforms integrated with advanced technologies such as nanotechnology, aptamers, surface-enhanced Raman spectroscopy (SERS), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. Finally, we discuss the prospects for the development of highly sensitive, accurate, cost-effective, and easy-to-use point-of-care COVID-19 diagnostic methods.
Collapse
|
18
|
Isolation of Antibodies Against the Spike Protein of SARS-CoV from Pig Serum for Competitive Immunoassay. BIOCHIP JOURNAL 2021; 15:396-405. [PMID: 34466204 PMCID: PMC8390843 DOI: 10.1007/s13206-021-00033-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Several endemic corona viruses (eCoVs) have been reported to be the most common etiologic agents for the seasonal common cold and also cause pneumonia. These eCoVs share extensive sequence homology with SARS-CoV-2, and immune responses to eCoVs can cross-react with SARS-CoV-2 antigens. Based on such cross-reactivity of antigens among eCoVs, the IgG antibodies against the spike protein (SP) of severe acute respiratory syndrome coronavirus (SARS-CoV) were isolated from pig serum using magnetic beads immobilized with SARS-CoV SP and a protein-A column. The selectivity of the isolated antibodies was tested using different types of antigens, such as SARS-CoV-2 nucleoprotein (NP), influenza A virus (Beijing type), influenza B virus (Tokio and Florida types), human hepatitis B virus surface antigen (HBsAg), and bovine serum albumin (BSA). From the selectivity test, the anti-SP antibodies isolated from pig serum had sufficient selectivity to other kinds of viral antigens, and the apparent binding constant of the isolated antibodies was approximately 1.5 × 10-8 M from the surface plasmon resonance (SPR) measurements. Finally, the isolated anti-SP antibodies were applied to the immunoassay of SP using competitive immunoassay configuration. The feasibility of the detection as well as the quantitative analysis of the SARS-CoV viral culture fluid was determined using four viral culture samples, namely, SARS-CoV, SARS-CoV-2, MERS-CoV, and CoV-229E.
Collapse
|
19
|
Jung J, Bong JH, Lee SJ, Kim MJ, Sung JS, Lee M, Kang MJ, Song J, Jose J, Pyun JC. Screening of Fv Antibodies with Specific Binding Activities to Monosodium Urate and Calcium Pyrophosphate Dihydrate Crystals for the Diagnosis of Gout and Pseudogout. ACS APPLIED BIO MATERIALS 2021; 4:3388-3397. [PMID: 35014423 DOI: 10.1021/acsabm.0c01680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To date, medical diagnosis of gout and pseudogout has been performed by observing the crystals in the joint fluid of patients under a polarized microscope. Conventional diagnostic methods using a polarized microscope have disadvantages, such as time-consuming analysis, a high false negative rate, and difficulty in distinguishing gout with monosodium urate (MSU) crystals and pseudogout with calcium pyrophosphate dihydrate (CPPD) crystals in synovial fluids. In this study, a chromogenic assay for the diagnosis of gout and pseudogout, without the requirement of a polarized microscope and trained experts, was proposed using Fv antibodies with specific binding activities to MSU and CPPD crystals. The IgG VH chain Fv library with randomized complementarity-determining region 3 (CDR3) region was expressed on the outer membrane of Escherichia coli using autodisplay technology. The target Fv antibodies with binding activity to MSU and CPPD crystals were screened from the autodisplayed Fv library on the E. coli outer membrane, and five clones were selected. On the basis of the binding properties of the screened Fv antibodies, peptides with the selected clone of amino acid sequences of the CDR3 region (15 residues) were chemically synthesized. The binding properties of the synthetic peptides with amino acid sequences of CDR3 regions from the selected clones were analyzed using fluorescence imaging and flow cytometry, and the affinity constants (Kd) of each peptide for binding to MSU and CPPD crystals were calculated by fitting based on the isotherm model. A chromogenic assay configuration for gout and pseudogout was developed using synthetic peptides. In this chromogenic assay, synthetic peptides labeled with biotin and streptavidin-horseradish peroxidase (HRP) complex were used, and crystal detection was possible using a chromogenic reaction between HRP and a chromogenic substrate (TMB). Finally, gout and pseudogout were diagnosed by detecting MSU and CPPD crystals in the synovial fluid in the concentration range of 0-300 μg/mL.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Soo Jeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Min-Jung Kang
- Medicine Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, PharmaCampus, Westphalian Wilhelms-University Münster, Corrensstr. 48, Münster 48149, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
20
|
Anti-SARS-CoV-2 Nucleoprotein Antibodies Derived from Pig Serum with a Controlled Specificity. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00019-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|